簡易檢索 / 詳目顯示

研究生: 趙立德
Li-te Chao
論文名稱: 奈米孔洞低介電常數材料在半導體製程整合上之研究
A study of nanoporous silica of low dielectric constant materials for ULSI applications
指導教授: 施漢章
Han C Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 103
中文關鍵詞: 低介電常數材料銅製程填洞能力硬度蝕刻後潔淨製程
外文關鍵詞: low-k dielectric constant, copper metallization, gap-filling, hardness, post-cleaning process
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    當半導體製程進入深次微米世代,而積體電路(IC)的技術主要著重於元件的縮小化,然而元件速度受限於訊號在金屬連線間傳送的延遲效應,為了改善此問題,必須利用低介電常數材料來降低金屬連接線中的電容值及訊號在金屬連線間傳送的時間延遲,進而提高元件之工作效率。

    本論文在研究積體電路製造技術中的多層導體連線製程,探討奈米孔洞低介電常數材料(Nanoporous silica)在製程整合中遇到的問題而做詳細的探討與分析1)對於奈米孔洞二氧化矽薄膜的填洞能力,在加入TMCS於前驅物溶液後,不僅幫助填洞能力,也增進薄膜之疏水性,進而使K值降至2以下。2)在潔淨製程中能夠對ST-250(ATMI)溶液不產生任何作用,並且加入HMDS後也能將K值降至2.3。3)在鍛燒製程中以400℃、30分鐘的條件下能夠達到較佳的硬度值,和最低的K值,並且在鍛燒後加入一次的HMDS會有較佳的硬度值4)對奈米孔洞二氧化矽薄膜在退火溫度400-500℃時可承受銅金屬的擴散,可以從歐傑電子縱深分佈及X光繞射圖中可證明。


    Abstract
    Among various low-k materials, spin-on-glass (SOG) materials have been widely used as an interlayer dielectric in multilevel interconnections because of their ease of application and relatively low process costs. Porous materials are promising low-k materials with dielectric constant below 2; however, candidates should have good mechanical, thermal properties and minimum moisture adsorption. Compatibility of the films with IC processing was also investigated in this work.

    Spin-coating conditions have been optimized by various spin rates, precursor compositions and pre-coating treatments. The trimethylchorosilane (TMCS) in the precursor solution not only enhanced the hydrophobicity of the nanoporous silica film, but also the gap-filling ability on the aluminum trenches. In addition, 400℃ was found a good curing temperature for obtaining a low dielectric constant (1.93), good strength (65 Mpa) and hardness (1.4 Gpa).This work presents the results of nanoporous silica compatibility with the materials used in cleaning process and copper metallization.

    目錄 摘要 誌謝 目錄……………………………………………………………………..Ⅰ 圖目錄…………………………………………………………………..Ⅳ 表目錄…………………………………………………………………. Ⅸ 第一章 前言…………………………………………………………….1 第二章 文獻回顧……………………………………………………….2 2.1 超大型積體電路(Ultra Large Scale Integration Circuit)內連線(Interconnect)簡介………………………………………………...2 2.1.1 內連線在ULSI之重要性.…………………………………2 2.2 CVD與SOG介電材料之差異性………………………………….6 2.2.1 CVD介電材料…………………………………………….6 2.2.2 SOG介電材料……………………………………………..9 2.2.3 奈米孔洞二氧化矽介電材料……………………….…….11 2.3 銅金屬化製程(metallization)……………….…………………..13 2.4.1 銅材料之優勢………………………………….………….15 2.4.2金屬鑲嵌技術….…………………………………………..16 2.4.3擴散障礙層….……………………………………………..17 第三章 實驗步驟與流程…………………………………………….19 3.1 實驗步驟 3.1.1樣品基材………………………………………………….19 3.1.2晶圓清洗………………………………………………….21 3.1.3 溶液配製………………………………………………....21 3.1.4 塗佈與靜置製程…………………………………………22 3.1.5 烘烤與鍛燒製程…………………………………………22 3.1.6 HMDS(Hexamethydislazane)改質處理…………….23 3.1.7 鍍鋁及電性量測…………………………………………23 3.2 實驗流程………………………………………………………...25 3.3 分析儀器及其量測原理………………………………………...29 3.3.1 掃描式電子顯微鏡(SEM)……………………………...29 3.3.2 傅立葉轉換紅外線光譜儀(FTIR).…………………….30 3.3.3 X光繞射(XRD)………………………………………...32 3.3.4 歐傑電子能譜儀………………………………………..33 3.3.5 原子力顯微鏡(AFM)…………………………………...36 3.3.6 C-V量測………………………………………………..39 3.3.7 機械性質量測…………………………………………...40 第四章 結果與討論………………………………………………….44 4.1 中孔洞二氧化矽薄膜之填洞能力………………………………44 4.2 後潔淨製程對中孔洞二氧化矽薄膜之影響……………………61 4.3 中孔洞二氧化矽薄膜之機械性質………………………………65 4.4 銅金屬化對膜性質的影響………………………………………77 第五章 結論…………………………………………………………..90 第六章 未來研究方向…………………………………………………91 參考文獻………………………………………………………………..92 圖目錄 圖 2.1 利用銅導線與低介電常數材料間的結合來減少內連接線的延遲效應及增進元件間的表現示意圖[1]………………...3 圖2.2 顯示以CVD進行介電層沈積時,沈積層隨晶片表面高低起伏而產生孔洞的情形………………………………………..7 圖 2.3 兩種常用的SOG材質的化學結構(不含有機溶劑): (a)矽酸鹽類;(b)矽氧烷…………………………………10 圖 2.4 各種連線技術所需金屬層數隨元件尺寸縮小而增加之趨勢[30]………………………………………………………….15 圖3.1 未塗佈前的鋁溝槽(Al trench)(a)放大倍率30000X(b)深寬比=2.5:1(c)放大倍率60000X 的SEM圖……...19 圖3.2 鍍完鋁後的結構示意圖……………………………………..24 圖3.3 SEM構造示意圖[53]…………………………………………30 圖3.4 傅立葉轉換紅外線光譜儀。系統一,S1代表紅外光的輻射路徑,系統二,S2、系統三,S3分別代表雷射及白光干涉路徑[53]………………………………………………………...31 圖3.5 X光繞射原理示意圖[53]…………………………………..33 圖3.6 歐傑電子產生機構示意圖[53]……………………………..35 圖3.7 歐傑電子儀的儀器原理示意圖[53]………………………..35 圖3.8 Tapping mode AFM 掃描原理……………………………….38 圖3.9 量測C-V之方法[14]………………………………………..40 圖3.10 各種壓痕形狀所表示的各種曲線圖[54]…………………..41 圖3.12 針頭有校正與沒有校正的壓痕深度與硬度曲線圖,樣品為(111)矽單晶[54]………………………………………..42 圖3.13 Nanoindentor示意圖[54]………………………………..43 圖4.1.1 dip-coating………………………………………………..45 圖4.1.2 spin-coating……………………………………………….45 圖4.1.3加入10﹪TMCS的中孔洞二氧化矽薄膜於鋁圖案晶片中的IR比較圖……………………………………………………….47 圖4.1.4在300℃鍛燒溫度下不同的烘烤溫度之IR比較圖 加入10﹪TMCS的中孔洞二氧化矽薄膜於鋁圖案晶片中..48 圖4.1.5在400℃鍛燒溫度下不同的烘烤溫度之IR比較圖 加入10﹪TMCS的中孔洞二氧化矽薄膜於鋁圖案晶片中…49 圖4.1.6沒加入TMCS改質劑,在鍛燒完之後,填置溝槽中的中孔洞二氧化矽薄膜有收縮的現象……………………………….51 圖4.1.7(a)沒有添加TMCS於溶液中(b)添加TMCS,很明顯可以看出之間的差異…………………………………………….52 圖4.1.8 圖中膜的條件為1500 rpm 及經過HMDS處理後的SEM剖面圖………………………………………………………….53 圖4.1.9 做完兩次HMDS處理後並放置20-25天,其介電常數值只微幅上揚7﹪[15]………………………………………..54 圖4.1.10 旋轉速度與膜厚比較圖……………………………………57 圖4.1.11 膜厚與鍛燒溫度比較圖…………………………………..57 圖4.1.12(a)快轉速2500 rpm;(b)慢轉速1500 rpm之下的SEM圖………………………………………………………….58 圖4.1.13(a)表面AFM立體影像,其表面粗糙度為3-5Å (b)AFM之平面圖……………….………………………………..59 圖4.1.13(b)承上,為AFM之平面圖……………………………..60 圖4.1.14 平整度[61]…………………………….………………….60 圖4.2.1 C-6潔淨前與潔淨後的IR圖;潔淨前後相同,表示中孔洞二氧化矽薄膜對ST-250不會有所改變………………62 圖4.2.2 (a) 烘烤200℃,無HMDS蒸氣處理(C-5)的C-V圖;其K值為2.9…………………………………………………..63 圖4.2.2(b)烘烤200℃,165℃HMDS蒸氣處理(C-6)的C-V圖;其K值為2.3…………………………………………..64 圖4.3.1 400℃放置30天後的壓痕深度對荷重之關係圖………..65 圖4.3.2 放置不同天數及不同的鍛燒溫度下所測出的硬度值…..67 圖4.3.3 不同的鍛燒溫度對k值的影響……………………………68 圖4.3.4 不同的鍛燒溫度對漏電流密度的影響(在2MV/cm之下).68 圖4.3.5 400℃的硬度值較平均,不會有起伏很大的現象,反倒是 450℃的量測上下起伏很大……………………………..70 圖4.3.6 鍛燒時間對硬度的關係圖………………………………….71 圖4.3.7 在2MV/cm電場下,其電流密度為5.22E-8 A/cm2………..72 圖4.3.8 製程在400℃下鍛燒30分鐘其k值大約為1.8-1.9…….72 圖4.3.9 不同的膜對硬度之比較圖………………………………….73圖4.3.10在不同瓦數及不同轟擊時間下的硬度比較圖……………75 圖4.4.1(a)A-4、(c)A-7分別在相同的退火溫度下450℃、試片利用SEM放大表面至不同的倍率(A-4、A-7為不同的成分,如表4.4.1),圖中可看出,(a)表面出現非常多小破裂及花紋(b)將A-4放大到3500X(c)A-7放大到900X後,才看到小破裂及花紋………………………………………….79 圖4.4.2(a)A-4、(b)A-7分別在相同的退火溫度下500℃、試片利用SEM放大表面至3500倍(A-4、A-7為不同的成分,如表4.4.1),圖中可看出,表面出現小破裂及花紋,但是A-7的試片用肉眼看不到花紋(c)為A-4歐傑電子儀做完縱深分佈後的試片表面放大圖………………………………….81 圖4.4.3 利用原子力顯微鏡AFM 來掃瞄A-4 表面的花紋,其有如火山口般…………………………………………………83 圖4.4.4(a)A-4(b)A-1(c)A-3(d)A-7 為歐傑電子縱深分佈圖………………………………………………………….84 圖4.4.5 (a)A-1(b)A-2(c)A-4(d)A-7 X光繞射圖,圖中最強的波峰為銅(111)面…………………………………..87 表目錄 表2.1 金屬材料特性比[3]………………………….……………….5 表2.2 一些近期建議可行的低介電常數材料[24]………………….8 表2.3 1999 美國半導體工業協會(SIA) roadmap[20] ………..12 表3.1 二氧化矽前驅物溶液組成成份及濃[15]…………………..22 表4.2.1 烘烤及HMDS蒸氣處理製程皆為30分鐘…..……………..62 表4.3.1 表中的值為硬度值(Gpa)…………………………………..67 表4.3.2 在100 μN,400℃下,對加入10﹪TMCS的二氧化矽薄膜做硬度量測…………………………………………………….69 表4.3.3 不同的鍛燒時間其硬度值與k值之比較表……………….71 表4.3.4 未加入模板分子之中孔洞二氧化矽薄膜………………….73 表4.3.5 不同瓦數及電漿轟擊時間下之硬度表…………………...75 表4.3.6 SiLK、SiO2及Mesoporous silica之機械性質比較表[65].. ……………………………………………………………….76

    參考文獻
    1. L.Peters, Semiconductor International, Sep, p64 (1998)
    2. J.D.Plummer et.al “Silicon VLSI Technology”, ch 11, p683
    3. C.Ryu, Microstructure and Reliability of Copper Interconnects, 1998, p.3
    4. R.D.Goldblatt et.al, IEEE,p261-263(2000)
    5. J.C.Maisonobe et.al, “SILK compatibility with the IMD process using copper metallization”, Microelectronic Engineering, 50,p25-32(2000)
    6. G.W.Ray “Low Dielectric Constant Materials Integration Challenges” Mat.Res.Soc.Symp.Proc. Vol.511 pp199-211 (1998)
    7. C.M.Jin, S.List, E.Zielinski “Porous Silica Xerogel Processing and Integration for ULSI Application ” Mat.Res.Soc.Symp.Proc. Vol.511 pp213-222 (1998)
    8. T.Ramos, K.Rhoderick, R.Roth, L.Brungardt, S.Wallace, J.Drage, J.Dunne, D.Endisch, R.Katsanes, N.Viernes, and D.M.Smith “Nanoporous Silica for Low-K dielectrics” Mat.Res.Soc.Symp.Proc. Vol.511 pp105-110 (1998)
    9. Sylvie Acosta , Andre Ayral , Christian Guizard , Chareles Lecornec , Gerard Passemard and Mehdi Moussavi , “Sol-Gel Derived Silica Layers for Low-k Dielectrics Applications” Mat.Res.Soc.Symp.Proc.Vol.612. D5.26.1-D5.26.6 (2000)
    10. M.Uhlig, A.Bertz, M.Rennau,S.E.Schulz, T.Werner, T.Gessner, “Electrical and adhesion properties of plasma-polymerised ultra-low k dielectric films with high thermal stability” Microelectronic engineering 50 7-14 (2000)
    11. K.Endo, T.Tatsumi, Appl. Phys. Lett., 68(20), p2864-2866, (1996)
    12. Y.Ma, and H.Yang, Appl. Phys. Lett., 72(25), p3353-3355,(1998)
    13. H.Y, and T.Hayashi, Appl. Phys. Lett., 72(21), (1998)
    14. 莊達人,VLSI製造技術,高立圖書(2000)
    15. C. M. Yang, A. T. Cho, F. M. Pan, T. G. Tsai and K. J. Chao, to be published in Adv. Mater.
    16. P.Mezza , J.Phalippou , R. Sempere “Sol-gel derived porous silica films “J. Non-Cryst. Solids pp75-79 243 (1999)
    17. D.Chao , P.Yang , N.Melosh , J.Feng , F.Chmelka , and G.D.Stucky ”Continuous Mesoporous Silica Film with Highly Ordered Large Pore Structure” Adv.Mater , pp1380~1385, 10, No.16 (1998)
    18. M.Antonietti , B.Berton , C.Goltner , and H.P.Hentze “Synthesis of Mesoporous Silica with Large Pores and Bimodal Pore Size Distribution by Templating of Polymer Lattices” Adv.Mater , (1997)
    19. 陳麗梅,”多孔低介電常數材料” 電子月刊 Vol.7, No.4, pp130-137
    20. 陳力俊,微電子材料與製程, 中國材料科學學會,(2000)
    21. S.Pevzner et.al, “Thin film of mesoporous silica: preparation and characterization ”, Current Opinion Colloid&Interface Science 4, p420-427(2000)
    22. 張鼎張、等, “銅金屬化製程簡介” 毫微米通訊 Vol.5,No.3 (2000)
    23. 張鼎張、等, ”極大型積體電路之低介電常數材料應用與技術”電子月刊 Vol.5,No.6, pp104-115 六月號 (1999)
    24. B.Zhao, and M.Brongo Mat.Res.Soc.Symp.Proc. Vol.564 pp485-497 (1999)
    25. 楊正杰、張鼎張、鄭晃忠 ”銅金屬與低介電常數材料與製程”工業材料167期 pp121-126 (2000)
    26. Fabio Pintchovski, IEEE Electron Devices Meeting, 1994, p.5.1.1
    27. 陳來助, 電子與材料, 第一期, p.85
    28. 楊文祿, 吳其昌, 真空科技, 12卷2期, p.44
    29. 陳松德, 黃獻慶, 林裕鑫, 徐廣福, 陳錦山, 陳慶洪, 真空科技,11卷3、4期, p.27
    30. Bohr, M. T., International Electron Devices Meeting. Technical Digest, 1995, p.241-244
    31. 陳錦山, 黃獻慶, 鄭義冠, 真空科技, 12卷2期, p.26
    32. H.Ono, T.Iijima, N.Ninomiya, A.Nishiyama, Y.Ushiku, and H.Iwai, Japan Soc. of Appl. Phys., 40th Spring Meeting, Ext. Abstract,Apr.1993, p.814
    33. J. Tao, N.W.Cheung, and C.Hu, IEEE Electron Device Lett., 14(5), 1993, p.249-251
    34. H.K.Kang, I.Asano, C.Ryu, and S.S.Wong, IEEE VMIC Conf., 1993, p.223-229
    35. K.P.Rodbell, E.G.Colgan, and C.K.Hu, in Proc. of Advanced Metallization for Devices and Circuits-Science, Technology and Manufacturability, 1994, p.59-70
    36. 顧子琨, 電子月刊5(6), 1999, p.117-133
    37. Po-Tsun Liu , Ting-Chang Chang , Ya-Liang Yang ,Yi-Fang Cheng , Fu-Yung Shih , Jae-Kyun Lee, Eric Tsai , and Simon M. Sze “Effectively Blocking Copper Diffusion at Low-K Hydrogen Silsesquioxane/Copper Interface ” Jpn.J.Appl.Phys.Vol.38 pp6247-6252 part 1 , No.11 , November (1999)
    38. R.J.Contolini, L.Tarte, R.T.Graff and L.B.Evans, VMIC Conference, 1995, p.27
    39. M. E. Gross, C. Lingk, W. L. Brown, R. Drese, Solid State Technology, 1999, p.47-52
    40. S. Lakshminarayanan, J. Steigerwald, D. T. Price, M. Bourgeois, T. P. Chow, IEEE Electron Device Letters, 15(8), 1994, p.307
    41. S.S.Lin et.al, IEEE,p273-275(2000)
    42. J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, and D. J. Duquette, Industry Microelectronics Symposium, 1995, p.120
    43. Kuniko Kikuta, Yoshihiro Hayashi, Tutomu Nakajima, Keiichi Harashima, and akamaro Kikkawa, IEEE Transaction on Electron Devices, 43(5), 1996, p.739
    44. R.J.Contolini, L.Tarte, R.T.Graff and L.B.Evans, VMIC Conference, 1995, p.27
    45. Xiaomeng Chen, Harry L. Frisch, and Alain E. Kaloyeros, J. Vac. Sci. Technol. B, 16(5), 1998, p.2887
    46. S. C. Sun, M. H. Tsai, C. E. Tsai, ad H. T. Chiu, Symposium on VLSI Technology Digest of Technical Papers, p.29, 1995
    47. J.C.Patterson, M.O’Reilly, G.M.Crean, and J.Barrett, Microelectronic Engineering, 33, pp65-73, 1997
    48. M.Moussavi, Y. Gobil, L. Perroud, P.Motte, J. Torres, F.
    Romagna, M.Fayolle, J. Palleau and M. Plissonnier, IEEE, p.295-297, 1998
    49. Q.J.Jiang,H.R.Lam,andJ.Mucha, IEEE,(IITC), 1999,p.125-127
    50. Kee-Won, Changsup Ryu, and Robert Sinclair, Appl. Phys. Lett., 71(21), p.3069-3071, 1997
    51. Kee-Won, Changsup Ryu, and Robert Sinclair, Appl. Phys. Lett., 75(7), p.935-937, 1999
    52. R.J.Glexiner, and W.D.Nix, J. Appl. Phys., 86(4), p.1932-1944 , 1999
    53. 汪建民, 材料分析, 中國材料科學學會 (1998 )
    54. Bharat Bhushan “Handbook of micro/nano tribology”2nd(2000)
    55. E.E.Simonyi, K.W.Lee, R.F.Cook, E.G.Liniger, and J.Speidell “Characterization of Spin-On Glass by Microindentation” Mat.Res.Soc.Symp.Proc. Vol.511 pp157-164 (1998)
    56. W.C.Oliver et.al, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J.Mater.Res., Vol.7, No.6, (1992)
    57. Y.T Cheng , C.M. Cheng “Relationships between hardness , elastic modulus ,and the work of indentation” Appl.Phys.Lett.,Vol.73,No.5 3 Aug ,(1998)
    58. G.M.Pharr “Measurement of mechanical properties by ultra-low load indentation” Mater.Sci.and Engineering A253,pp151-159 (1998)
    59. S. V. Nitta, V. Pisupatti, A. Jain, P. C. Wayner, Jr., W. N. Gill, and J. L. Plawsky, J. Vac. Sci. Technol. B, 17 ,205 (1999).
    60. E.Kondoh et.al, “Dehydration after plasma oxidation of porous low-dielectric-constant spin-on-glass films”, Jpn.J.Appl.Phys. Vol.39,pp3919-39239(2000)
    61. Sang H. Hyun, Joong J.Kim, and Hyung H. Park “Synthesis and Characterization of Low-Dielectric Silica Aerogel Films” J.Am.Cream.Soc. , 83[3] pp533-540 (2000)
    62. E.D.Birdsell, and R.A.Gerhardt “Porous Silica: A potential material for Low-K dielectric constant applications” Mat.Res.Soc.Symp.Proc. Vol.511 pp111~116 (1998)
    63. Shi-Qing Wang and Bin Zhao “Gap fill dependence of fluorinated polyimide films on solid content , adhesion promoter , spin dwell time , and solvent spray” J.Vac.Sci.Technol.B., Vol.14, No.4, pp2656-2659(1996)
    64. M.H.Jo, S.Y.Choi, “Application of SiO2 aerogel film with low dielectric constant to intermetal dielectrics”, Thin Solid Film,308,p490-494(1997)
    65. E.O.Shaffer et.al,“On the mechanical integrity of ultra low dielectric constant materials for use in ULSI BEOL structure”, Mat.Res.Soc.Symp.Proc. Vol.612 p D.1.1-D.1.8 (2000)
    66. 劉繼文等,”低介電常數材料機械性質之研究”, 毫微米通訊 Vol.7,No.2 (2000)
    67. D.Louis et.al, “Post etch cleaning of Dual Damascene system integrating copper and SILK”, IEEE,p99-103(1999)
    68. P.J.Matsuo et.al, “Characterization of Al,Cu,and TiN surface cleaning following a low-k dielectric etch”, J. Vac. Sci. Technol. B, 17 ,4 (1999)
    69. D.Louis et.al , “Cleaning process strategies compatible with low-k dielectric and copper: state of the art , evolution and perspectives”, p250-253,IEEE(2000)
    70. A.T.Chao et.al ”Plasma Treatment of Molecularly Templated Nanoporous Silica Films”, Electrochemical and Solid-State Letters ,4(4),ppG35-G38 (2001)
    71. Alvin L.S.Loke , Jeffrey T.Wetzel , Paul H.Townsend , Tsuneaki Tanabe , Raymond N. Vrtis , Melvin P Zussman , Devendra Kumar, Changsup , Ryu , and S. Simon Wong “Kinetics of Copper Drift in Low-K Polymer Interlevel Dielectrics” IEEE Transaction On Electron Device , Vol 46,No.11 , pp.2178-2187 Nov (1999)
    72. B.Zhu, D.E.Katsoulis, J.R.Keryk, F.J.McGarry “ Toughening of a polysilsesquioxane network by homogenous incorporation of polydimethylsiloxane segments ”, Polymer ,41, pp7559-pp7576 (2000)
    73. C.Hu, M.Morgon, and P.S.Ho, “Thermal conductivity study of porous low-k dielectric materials”, Appl. Phys. Lett., 77(1), p145-147 ,(2000)
    74. J.H Zhao, T. Ryan , P. S. Ho “On-wafer characterization of thermomechanical properties of dielectric thin films by bending beam techique” J.Appl.Phys. Vol.88 ,No.5,1 September (2000)
    75. J.H.Zhao et.al, “Thermomechanical properties and moisture uptake characteristics of hydrogen silsesquioxane submicron films”, Appl. Phys. Lett., 74(7), (1999)
    76. Yuhuan Xu , Yipin Tsai , D.W.Zeng ,K.N.Tu , Chung Wo Ong , Chung Loong Choy , Bin Zhao , Q-Z. Liu and Maureen Brongo “Measurement of mechanical properties for dense and porous polymer films having a low dielectric constant” J.Appl.Phys ,Vol.88,No.10,15 pp 5744-5750 November (2000)
    77. J.H.Zhao, Y.Du, M.Morgen, P.S. Ho“Simultaneous measurement of Young’s modulus, Poisson ratio, and coefficient of thermal expansion of thin films on substrates” J.Appl.Phys. Vol.87,No.3,1 Feb pp1575-1577 (2000)
    78. G.Cornella, S.H.Lee, W. D. Nix, and J.C.Bravman “An analysis technique for extraction of thin film stresses from x-ray data” Appl.Phys.Lett.Vol.71, No.20, 17,Nov. (1997)
    79. P.O.Renault, K.F.Badawi, L.Bimbault, Ph. Goudeau, E.Elkaim, and J.P.Lauriat “Poisson’s ratio measurement in tungsten thin films combining an x-ray diffractometer with in-situ tensile tester” Appl.Phys.Lett.Vol.73, No.14, 5 Oct pp1952-1954 (1998)
    80. J.H.Jou, and L.Hsu,“Stress analysis of elastically anisotropic bilayer structures” J.Appl.Phys. Vol.69,No.3,1 Feb, pp1384-1388 (1991)
    81. E.O.Shaffer, F.J.Mcgarry, and Lan Hoang “Designing Reliable Polymer Coatings” Polymer Engineering And Science
    , Vol.36,No.18 Sept,(2000)
    82. 黃炳懷, ”X光繞射在殘留應力之應用”, 科儀新知,Vol.22, No.2,p23-30(2000)
    83. 表和彥、陳貞夙, “薄膜之低掠角X光in-plane 繞射分析”, 科儀新知,Vol.22, No.2,p47-53(2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE