研究生: |
劉伊郎 Liu, Yee-Lang |
---|---|
論文名稱: |
電子顯微鏡應用於奈米尺度材料特性及物理性質分析先進技術發展與研究 Novel Study of Nano-scale Material Property Measruing and Image Probing by Transmission Electron Microscopy |
指導教授: |
開執中
陳福榮 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 穿透式電子顯微鏡 、氧化釕 、氮氧化鋯 、多重中心暗場像 |
外文關鍵詞: | TEM, RuO2, ZrNxOy, MCDF, TEM-STM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米尺度材料是近年來材料研發與分析的主要發展方向,其中過渡金屬更因其d層軌域電子的關係,可以表現出多種特別的性質或與氧原子表現出多種的氧化態而受到密切的注意,因此電子顯微鏡相關的儀器及技術的發展及應用也成為主流,隨著各種氧化物奈米線的製備成功,因其尺度微小,對量測環境的變化非常敏感,所以在量測其物理性質時非常容易受到儀器的影響而產生誤差,而造成往往量測到的訊號大部分皆由量測誤差貢獻,反而將奈米線本身的訊息掩蓋,而無法得到正確的資訊,因此發展精確量測並即時觀察單根氧化物奈米線的性質的量測技術有其必要。另一方面,在過渡金屬薄膜中,隨著奈米顆粒的加入,其物理性質如光學、光電、硬度等隨之產生改變,隨著所加入材料的分佈情形不同,對於其性質也產生巨大的改變,如果不能觀察到其正確的微結構分佈,也就沒有辦法推論影響其物理性質改變的原因,而由於奈米晶體於母材中分佈相對混亂,且通常其結構嵌合在母材中,因此很難利用常規的電子顯微鏡技術去觀察分析出奈米晶體於母材中的分佈情形,因此發展一先進電子顯微鏡技術去觀察奈米晶體於過渡金屬薄膜中的分佈也是當前研究奈米尺度材料不可或缺的發展方向。
本論文主要分為兩個部分:第一部分是利用穿透式電子顯微鏡以及附掛其上的穿隧式電子顯微鏡系統觀察量測氧化釕奈米線的結構、成份、成長方向以及其電學性質等特性,STM-TEM系統可以同時量測單根奈米線的電性又可即時觀測接觸情況。第二部份則是利用環狀物鏡光圈的概念所發展出的多重中心暗場成像技術,分析氮氧化鋯薄膜中氮化鋯以及氧化鋯兩相奈米結晶的分佈情形,並根據影像結果對氮氧化鋯薄膜中隨著氧原子含量的變化其硬度隨之變化的情形做出合理的解釋。隨著此項影像技術應用於多晶薄膜材料系統,對於多晶薄膜中,各項物理性質的變化,可以得到直接的分析並進行合理的解釋。
Single-crystalline RuO2 nanowires were grown by using a thermal evaporation method. A control of the sizes _width and length_ and the length-to-width ratio of the nanowires were achieved by tuning the growth time. A transmission electron microscope–scanning tunneling microscope technique invoking one-nanocontact electrical characterization was adopted to determine the room-temperature resistivity ~100 μΩ-cm of the nanowires. An e-beam lithography technique facilitating two-nanocontact measurements was performed to establish the metallic characteristic of individual nanowires. The authors found that a nanocontact may introduce high contact resistance, nonlinear current-voltage characteristics, and even semiconducting behavior in the temperature dependent resistance.
And a nanocrystalline ZrNxOy thin film was deposited using hollow cathode discharge ion-plating (HCDIP). ZrO2 and ZrN phases were detected by X-ray diffraction in the as-deposited film, suggesting phase separation during the growth process. This research performed a transmission electron microscopy (TEM) study on the mechanism of phase-separation and distribution in ZrNxOy thin films and related the phase fraction with the film properties. Since the crystallographic orientations of the ZrO2 and ZrN phases are random, the microstructure of the separated phases is studied with multiple central dark-field (MCDF) technique. The compositional distribution between the separated phases is analyzed with nano-beam energy dispersive X-ray spectroscopy (EDX). The results showed that zirconium oxynitride (ZrNxOy) thin film has a columnar structure with an alternate arrangement of columns of ZrN and ZrO2, indicating that oxygen atoms are inter-columnarly segregated with a lateral diffusion distance lower than 20 nm.
[1] Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, Science 292,1897 (2001).
[2] Chengchun Tang, Yoshio Bando, and Tadao Sato, J. Phys. Chem. B,106,7449-7452 (2002).
[3] Z.Q. Liu, S.S. Xie, L.F. Sun, D.S. Tang , W.Y. Zhou, C.Y. Wang, W. Liu, Y.B. Li, X.P. Zou, G. Wang, J. Mater. Res.,16, 683-686 (2001).
[4] X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Chemical Physics Letters 373,28–32 (2003).
[5] C. N. R. Rao, B. Raveau, Transition Metal Oxides: Structure, Properties, and Synthesis of Ceramic Oxides, 1998, Wiley Press.
[6] D. B. Rogers, R. D. Shannon, A. W. Sleight, J. L. Gillson, Inorg. Chem., 8, 841 (1969).
[7] Charles Kittel, Introduction to Solid State Physics 7th ed., John Wiley & Sons. Inc., 1996.
[8] L. F. Mattheiss, Phys. Rev. B,13,2433 (1976).
[9] S. M. Marcus, S. R. Butler, Phys. Lett.,26A,518 (1968).
[10] R. T. Slivka, D. N. Langenberg, Phys. Lett., 28A,169 (1968).
[11] R. R. Daniels and G. Margaritiondo, Phys. Rev. B, 29,1813 (1984).
[12] W. Steinh□gl, G. Schindler, G. Steinlesberger, M. Engelhardt, Phys. Rev. B,66,075414-1 (2002).
[13] S. Park, H. Kim, K. Kim, S. Min, Thin Solid Film,341,52 (1999).
[14] Y. Abe, Y. Kaga, M. Kawamura, K. Sasaki, J. Vac. Sci. Technol. B,18,1348 (2000).
[15] Y. Matsui, M. Hiratani, S. Kimura, J. Material Science, 35 ,4093 (2000).
[16] Q. X. Jia, X. D. Wu, S. R. Foltyn, A. T. Findikoglu, P. Tiwari, J. P. Zhang, T. R. Jow, Appl. Phys. Lett.,67,1677 (1995).
[17] H. Schafer, Chemical Transport Reactions, 1964, Academic Press.
[18] E. Kaldis, Crystal Growth-Theory and Techniques: Principles of the Vapor Growth of Single Crystals, Vol. 1, 1974, Plenum Press.
[19] R. G. Vadimsky, R. P. Frankenthal, D. E. Thompson, J. Electrochem. Soc.,126, 2017 (1979).
[20] R. K□tz, S. Stucki, Electrochim. Acta,31,1311 (1986).
[21] T. Arikado, C. Iwakura, H. Tamura, Electrochim. Acta,23,9 (1978).
[22] D. W. Murphy, F. J. Di Salvo, J. N. Carides, J. V. Waszczak, Mat. Res. Bull.,13,1395 (1978).
[23] A. Fog, R. P. Buck, Sensors and Actuators,5,137 (1984).
[24] M. Witter, D. S. Lee, Appl. Phys. Lett.,50,1879 (1987).
[25] S. D. Bernstein et al., Kwok et al., the 4th International Symposium on Integrated Ferroelectrics, 1992
[26] V. Subramanian, S. C. Hall, P. H. Smith, B. Rambabu, Solid State Ionics ,175,511 (2004)
[27] J. V. Ryan, A. D. Berry, M. L. Anderson, J. W. Long, R. M. Stroud, V. M. Cepak, V. M. Browning, D. R. Rolison, C. I. Merzbacher, Nature,406,169 (2000).
[28] B. C. Satishkumar, A. Govindaraj, M. Nath, C. N. R. Rao, J. Mater. Chem.,10,2115 (2000).
[29] C. C. Chen, R. S. Chen, T. Y. Tasi, Y. S. Huang, D. S. Tsai and K. K. Tiong, J. Phys.: Condens. Matter,16,8475 (2004).
[30] C. S. Hsieh, D. S. Tsai, R. S. Chen and Y. S. Huang, Appl. Phys. Lett.,85, 3860 (2004).
[31] A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Sch□nenberger, J.-P. Salvetat, J.-M. Bonard, and L. Forro´, Phys. Lett.,73,274 (1998).
[32] D. K. Schroder, Semiconductor Material and Device Characterization, (A Wiley-Interscience Publication, 1998), pp.2-3.
[33] Y.-P. Zhao, B. Q. Wei, P. M. Ajayan, G. Ramanath, T.-M. Lu, and G.-C. Wang1, Phys. Rev. B,64, 201402 (2001)
[34] L Pe˜nate-Quesada, J Mitra1 and P Dawson, Nanotechnology 18, 215203 (2007)
[35] S. Mohammadzadeh, D. Pouladsaz, R. Streiter, T. Gessner, Microelectronic Engineering,85 , 1992-1994 (2008)
[36] U. Ramsperger, T. Uchihashi, H. Nejoh, Appl. Phys. Lett., 78,85 (2001).
[37] M. M. Rosario and Y. Liu, Phys. Rev. B ,65, 094506 (2002)
[38] V. Meunier, H. Muramatsu, T. Hayashi, Y. A. Kim, D. Shimamoto, H. Terrones, M. S. Dresselhaus, M. Terrones, M. Endo, B. G. Sumpter ., Nano Lett.,9(4), 1487-92 (2009)
[39] K. Zhang1, C. Rossi1, C. Tenailleau, P. Alphonse and J.-Y. Chane-Ching, Nanotechnology,18 275607 (2007)
[40] J. M. Baik, M. H. Kim, C. Larson, A. M. Wodtke and M. Moskovits, J. Phys. Chem. C,112,13328–13331 (2008).
[41] M. W. Larsson, L. R. Wallenberg, A. I. Persson, and L. Samuelson, Microsc. Microanal.,10,41 (2004).
[42] Yunze Long, Zhaojia Chen, Wenlong Wang, Fenglian Bai, Aizi Jin and Chanzhi Gu, Appl. Phys. Lett.,86, 153102 (2005).
[43]Y. Yu, C. H. Jin, R. H. Wang, Q. Chen, and L.-M. Peng, J. Phys. Chem. B,109 (40),18772–18776 (2005).
[44] Z. Y. Zhang, C. H. Jin, X. L. Liang, Q. Chen, and L.-M. Peng, Appl. Phys. Lett.,88,073102 (2006).
[45] Kirk J. Ziegler, Daniel M. Lyons, Justin D. Holmes, Donats Erts, Boris Polyakov, H□kan Olin, Krister Svensson, and Eva Olsson, Appl. Phys. Lett.,84, 4074 (2004).
[46] H. Ohnishi, Y. Kondo and K. Takayanagi, Nature,395 780 (1998).
[47] G. Binning and H. Rohrer, C. Gerber and E. Weibel, Phys. Rev. Lett.,49,57 (1982).
[48] J. C. H. Spence, Ultramicroscopy,25,165 (1988).
[49] K. J. Ziegler, D. M. Lyons, and J. D. Holmes, Appl. Phys. Lett.,84,4074 (2004).
[50] S. Eliahou-Niv, R. Dahan, and G. Golan, Microelectron. J., 37,302 (2006).
[51] Z. Ji, J. Du, J. Fan, and W. Wang, Opt. Mater._Amsterdam, Neth.,28,415 (2006).
[52] A. Sch□ler, J. Boudaden, P. Oelhafen, E. De Chambrier, C. Roecker, and J.-L. Scartezzini, Sol. Energy Mater. Sol. Cells,89,219 (2005).
[53] P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E.Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J. P. Rivi□re, J. F.Pierson, and O. Banakh, J. Appl. Phys.,98, 023715 (2005).
[54] J. Vetter, G. Barbezat, J. Crummenauer, and J. Avissar, Surf. Coat. Technol.,200,1962 (2005).
[55] B. W. Allcock, and P. A. Lavin, Surf. Coat. Technol ., 163–164,62 (2003).
[56] H. K. Pulker, Coatings on Glass, Thin Films Science and Technology, Elsevier, Amsterdam,6,343–417 (1984).
[57] H. Bach and N. Neuroth, The Properties of Optical Glass, (Springer,Heidelberg, 1995) pp. 263–388.
[58] E. Ryshkewitch,“Zirconia,”Oxide Ceramics, 1st ed., Academic. Press.,New York, 1960, Chap.II.5.
[59] S. Venkataraj, O. Kappertz, C.Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum,75,7 (2004).
[60] Z. W. Zhao, B. K. Tay, G. Q. Yu, S. P. Lau, J. Phys., Condens Mat.,15,7707 (2003).
[61] A. Hidaka, J. Nakamura, J. Sugimoto, Nucl. Eng. Des.,168, 361 (1997).
[62] K.Maca, H. Hadraba, J. Cihlar, Ceramics-Silikaty,42, 151-158 (1998 ).
[63] A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, N. Serpone, Langmuir,14,5011 (1998).
[64] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc.,24,2657 (2004).
[65] X. J. Chen, K. A. Khor, S. H. Chan, L. G. Yu, Mater. Sci. Eng.,335,246 (2002).
[66] Wen-Jun Chou, Ge-Ping Yu, Jia-Hong Huang, Surf. Coat. Technol.,149,7 (2002).
[67] J. Musil and J. Wolfe, Mater. Sci. Eng., A163,211 (1993).
[68] P. Jin, S. Maruno, Jpn. J. Appl. Phys.,30 (7),1463 (1993).
[69] E.T□rok, A. J. Perry, L. Chollet, W. D. Sproul, Thin Solid Films,153,37 (1987).
[70] L. E. Toth,“Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, P. 188.
[71] W. Ensinger, A. Schroer, G. K. Wolf, Nucl. Instrum. Meth. Phys.Res.,B,80/81,445 (1993)
[72] N.Martin, R. Sanjines, J. Takadoum, F. Levy, Surf. Coat. Technol.,615,142-144 (2001)
[73] F, vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, Surf. Coat. Technol., 197,174-175, (2003)
[74] F, vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow, J de Rijk, Thin Solid films,449,447-448 (2004)
[75] R. A. Dugdale, J. Mater. Sci..160,1 (1966)
[76] M. J. Williamson, D. N. Sunn, R.Hull, S. Kodambaka, I. Petrov, and J. E. Greene, Appl. Phys. Lett.,78,2223-2225 (2001).
[77] Yee-Lang Liu,Jia-Hong Huang,Ji-Jung Kai and Fu-Rong Chen, Mater. Chem. Phys., 116 ,503–506 (2009).
[78] L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E.Alves, A. Cavaleiro, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol.,200,2917 (2006).
[79] 林奎君,國立清華大學工程與系統科學研究所碩士論文,2005.
[80] 黃植正,國立清華大學工程與系統科學研究所碩士論文,2003.
[81] J.-H. Huang et al., Surf. Coat. Technol.,201,6404 (2007).
[82] R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy“, Plenum Press, New York (1996).
[83]Yee-Lang Liu, Zong-Yi Wu, Kuei-Jiun Lin, Jr-Jeng Huang, Yong-Han Lin, Wen-Bin Jian, Juhn-Jong Lin, Appl. Phys. Lett., 90,013105 (2007).
[84] R. Holm,“Electric Contact”, Springer-Verlag (1967)
[85] I. Ekvall, E. Wahlstr□m, D. Claesson, H. Olin, and E. Olsson, Meas. Sci. Technol.,10,11 (1999).
[86] T. Shimizu, A. Ando, H. Abe, Y. Nakayama, and H. Tokumoto, In Proceedings of nano-7/ecoss-21, Sweden (2002).
[87] Jeong-O Lee, C. Park, Ju-Jin Kim, Jinhee Kim, Long Wan Park, and Kyung-Hwa Yoo, J. Phys. D: Appl. Phys.,33,1953 (2000).
[88] T. Kizuka, Phys. Rev. Lett.,81,4448 (1998).
[89] A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Sch□nenberger, J.-P. Salvetat, J.-M. Bonard, and L. Forro´, Appl. Phys. Lett.,73,274 (1998).
[90] Mike Gedeon,“The importance of Contact Force”, vol. 1 (1999) Tchnical Tidbits.
[91] B. S. Xu and S. I. Tanaka, Nanostructured Materials,12,915 (1999).