簡易檢索 / 詳目顯示

研究生: 許軒榮
Hsu, Hsuan-Jung
論文名稱: 一個運用具壓抑性數位濾波器與頻率內差之低抖動全數位鎖相迴路
A Low-Jitter ADPLL via Suppressive Digital Filter and Frequency Interpolation
指導教授: 黃錫瑜
Huang, Shi-Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 38
中文關鍵詞: 全數位鎖相迴路數位濾波器數位控制振盪器鎖定演算法
外文關鍵詞: ADPLL, digital filter, DCO, locking algorithm
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡面,我們提出了一個具有低抖動量(jitter)且操作頻率寬廣的全數位鎖相迴路(All-Digital Phase-Locked Loop),實際晶片量測結果顯示其中的數位頻率振盪器(Digitally-Controlled Oscillator)可以操作在62MHz ~ 616MHz,再搭配上一個可程式化的除頻器,其除數的範圍為1~2046,因此可因應各種不同的應用而產生出各式不同的頻率組合。並且我們利用一個在靜態記憶體(SRAM)中經常使用的栓鎖型感測放大器(Latch-based Sense Amplifier)來作為相位偵測器(Phase Detector),利用其放大的能力,使得其能夠有極高的解析度,模擬結果顯示,即使其相位差只有1ps並且存在製程變異時,仍能夠正確判斷且運作。除此之外,此全數位鎖相迴路透過一個漸進式的鎖定過程,以達其低抖動時脈目的;首先,利用一個預測式的鎖相方式,將相位快速鎖定;接著利用一個具壓抑性的數位濾波器(Suppressive Digital Filter)來減少時脈抖動,最後再利用一個利用頻率內差(Frequency Interpolation)的相位鎖定方式來增加數位控制振盪器的解析度,因而可再改善其相位誤差(Phase Error)與時脈抖動。此電路設計亦透過TSMC 0.18um的製程實現,模擬結果發現,這樣的鎖定方式,其時脈抖動的結果相當接近於開迴路數位振盪器的效能,同時當參考時脈頻率為1MHz且N為128時,透過頻率內差的鎖定方式,其相位誤差值可由原來588ps降低至21ps,量測的結果發現,當其輸出頻率在600MHz時,其峰對峰的時脈抖動與方均根時脈抖動分別只有56ps與7.28ps。


    In this thesis we present a low-jitter and wide-range all-digital phase-locked loop (ADPLL). Measurement results show the digitally controlled oscillator (DCO) is able to operate from 62 to 616 MHz. Combined with a programmable divider with its multiplicative factor from 1 to 2046, various frequencies could be synthesized for different applications. The Phase Detector (PD) is designed using a latch-based sense amplifier, leading to a nearly perfect one that is able to resolve a phase difference as minute as 1ps, while withstanding severe process variation. This ADPLL achieves low output clock jitter by a hybrid locking procedure. Firstly, the phase is locked quickly through a predictive phase-locking scheme. Then, the jitter is further minimized by a suppressive digital filter. Finally, a concept of frequency interpolation is utilized to enhance the resolution of the DCO so as to further reduce the phase error and jitter. Simulation results show that the jitter performance is very close to that of the free-running DCO and the phase error can be substantially reduced from 588ps to 21 ps where the reference clock is 1MHz and N is 128. Measurement results show that the jitterPk-Pk and jitterRMS are 56ps and 7.28ps, respectively, when the output clock of the ADPLL is running at 600Mhz.

    Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Thesis Organization 2 Chapter 2 Preliminaries 3 Chapter 3 Circuit Architecture 7 3.1 Overall Architecture 7 3.2 Digitally Controlled Oscillator 8 3.3 Phase Detector 11 3.4 Locking Procedure 15 3.4.1 Frequency Detector 16 3.4.2 Preliminary Phase Locking 17 3.4.3 Suppressive Digital Filter 19 3.4.4 Frequency Interpolation 21 Chapter 4 Experimental Results 24 4.1 Simulation Results 24 4.2 Measurement Results 29 Chapter 5 Conclusion 34 Bibliography 35

    [1] M. Bazes, “A Novel Precision MOS Synchronous Delay Line,” IEEE J. of Solid-State Circuits, vol. 20, no. 6, pp. 1265-1271, Dec. 1985.
    [2] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, “An All-Digital Phase-Locked Loop with 50-Cycle Lock Time Suitable for High-Performance Microprocessors,” IEEE J. Solid-State Circuits, vol. 30, no. 4, pp. 412–422, Apr. 1995.
    [3] J.-S Chiang and K.-Y Chen, “The Design of an All-Digital Phase Locked Loop with Small DCO Hardware and Fast Phase Lock,” IEEE Trans. on Circuits and System II, vol. 46, no. 7, pp. 945-950, Jul. 1999.
    [4] T.-Y. Hsu, B.-J. Shieh, and C.-Y. Lee, “An All-Digital Phase-Locked Loop (ADPLL)-Based Clock Recovery Circuit,” IEEE J. Solid-State Circuits, vol. 34, no. 8, pp. 1063–1073, Aug. 1999.
    [5] P. Andreani, F. Bigongiari, R. Roncella, R. Saletti, and P. Tee, “A Digitally Controlled Shunt Capacitor CMOS Delay Line,” Proc. of Analog Circuits and Signal, vol. 18, pp. 89-96, 1999.
    [6] T. Olsson, P. Nilsson, T. Meincke, A. Hemam, and M. Torkelson, “A Digitally Controlled Low-Power Clock Multiplier for Globally Asynchronous Locally Synchronous Designs,” IEEE Int’l Symp. on Circuit and Systems, pp. 13-16, May 2000.
    [7] T.-Y. Hsu, C.-C. Wang, and C.-Y. Lee, “Design and Analysis of a Portable High-Speed Clock Generator,” IEEE Trans. on Circuits and System II, vol. 48, no. 4, pp. 367-375, Jul. 2001.
    [8] C.-C. Chung and C.-Y. Lee, “An All-Digital Phase-Locked Loop for High-Speed Clock Generation,” IEEE J. of Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.
    [9] T. Watanabe and S. Yamauchi, “An All-Digital PLL for Frequency Multiplication by 4 to 1022 With Seven-Cycle Lock Time,” IEEE J. of Solid-State Circuits, 2003, vol. 38, no. 2, pp. 198-204, 2003.
    [10] T. Olsson and P. Nilsson, “A Digitally Controlled PLL for SOC Applications,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 751-760, May 2004.
    [11] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and Speed Optimization of a Latch-Type Voltage Sense Amplifier,” IEEE J. of Solid-State Circuits, vol. 39, no. 7, pp. 1148-1158, 2004.
    [12] K.-J. Lee, S.-H Jung, Y.-J. Kim, C. K, S. K, U.-R. Cho, C.-G. Kwai, and H.-G. Byun, “A Digitally Controlled Oscillator for Low Jitter All Digital Phase Locked Loops,” Proc. of Asian Solid-State Circuits Conference, pp. 365-368, Nov. 2005.
    [13] G. Yan, C. Ren, Z. Guo, Q. Ouyang, and Z. Chang, “A Self-Based PLL with Current-Mode Filter for Clock Generation”, IEEE Int’l Solid-State Circuit Conf., pp. 420-421, Feb. 2005.
    [14] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, “A Portable Digitally Controlled Oscillator Using Novel Varactors,” IEEE Trans. on Circuits and System II, Express Briefs, vol. 52, no. 5, pp.233-237, May 2005.
    [15] D. Sheng, C.-C. Chung, and C.-Y. Lee, “An All-Digital Phase-Locked Loop with High-Resolution for SoC Applications,” Proc. of Int’l Symp. on VLSI Design, Automation and Test (VLSI-DAT’06), pp.1-4, Apr. 2006.
    [16] P.-L. Chen, C.-C. Chung, J.-N. Yang, and C.-Y. Lee, “A Clock Generator with Cascaded Dynamic Frequency Counting Loops for Wide Multiplication Range Applications,” IEEE J. of Solid-State Circuits, vol. 41, no. 6, pp. 1275-1285, 2006.
    [17] M.-H. Cheng, Z.-X. Yang, and W. Huang, “A 1.9mW Portable ADPLL-Based Frequency Synthesizer for High Speed Clock Generation,” Proc. of Int’l Symp. on Circuit and Systems (ISCAS’07), pp. 1137-1140, May 2007.
    [18] R. Staszewski and P. Balsara, “All-Digital PLL with Ultra Fast Settling,” IEEE Trans. on Circuits and System II, Express Briefs, vol. 54, no. 2, pp.181–185, Feb. 2007.
    [19] D. Sheng, C.-C. Chung, and C.-Y. Lee, “An Ultra-Low-Power and Portable Digitally Controlled Oscillator for SoC Applications,” IEEE Trans. on Circuits and System II, Express Briefs, vol. 54, no. 11, pp.954-958, Feb. 2007.
    [20] J. Zhuang, Q. Du, and T. Kwasniewski, “A 4GHz Low Complexity ADPLL-based Frequency Synthesizer in 90nm CMOS,” Proc. of Custom Integrated Circuits Conference, pp.543-546, Sept. 2007.
    [21] J.-A. Tierno, A.-V. Rylyakov, and D.-J. Friedman, “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI,” IEEE J. of Solid-State Circuits, vol. 43, no. 1, pp. 42-51, 2008.
    [22] H.-J. Hsu, C.-C. Tu, and S.-Y. Huang, “A High-Resolution All-Digital Phase-Locked Loop with its Application to Built-In Speed Grading for memory,” Proc. of Int’l Symp. on VLSI Design, Automation and Test, pp. 267-270, Apr. 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE