研究生: |
王翔永 Wang, Shiang-Yung |
---|---|
論文名稱: |
低溫製備二氧化鈦光電極及其在可撓式染料敏化太陽能電池之應用 Low-temperature fabrication of titanium dioxide photoanode and its application in the dye-sensitized solar cells |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
李紫原
陳登銘 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 低溫製程 、可撓式二氧化鈦電極 |
外文關鍵詞: | low temperature fabrication, flexible titanium dioxide |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗選用聚乙烯對苯二甲酸酯(Polyethylene terephthalate, PET)進行電極製備,但因PET基板熔點約為2000C,無法應用於傳統4500C的高溫製程,故本實驗使用低溫燒結製程製備TiO2電極,並添加四異丙基鈦(Titanium isopropoxide, TTIP)作為漿料的連結劑(Binder),電極經低溫1500C燒結後,可減少裂縫生成並且增加二氧化鈦顆粒間的黏著性 。為提升低溫製程電池的效率,本研究嘗試添加不同尺寸及含量的聚苯乙烯球(Polystyrene, PS microsphere)於低溫漿料中,並藉由N-甲基2-四氫吡各酮(N-Methyl-2-pyrrolidone, NMP)及不同溶劑清洗,移去PS球以改變多孔電極的微結構。最後將電極組成電池後,進行電池的量測。
本研究發現添加250 nm PS球於二氧化鈦電極中,經過有機溶劑NMP處理並以不同溶劑清洗,最後組合電池量測,可使光電轉換效率(Photo-electric conversion efficiency)由原本未添加PS球的電極所組成電池的量測效率為2.40%提升至3.23%,開路電壓則由0.73 V提升至0.92 V。添加PS電極之光電轉換效率雖略低於高溫製程所得的電池3.88%(玻璃基板)。但與未添加PS球的低溫漿料電池相比,效率已有明顯提升。最後比較彎曲測試(Bending test)下的電池效率,當電池彎曲至60o時,仍能維持2.82%的效率。
In this study, we used polyethylene terephthalate (PET) as the electrode supporter of a flexible dye-sensitized solar cell (DSSC). Because PET can not sustain a high temperature of 4500C during the sintering process, therefore we developed a method to fabricate TiO2 photoanode for flexible DSSC which can be sintered at relatively low temperature. Tetraisopropoxide (TTIP), an additive which can increase interconnection of TiO2 particles at low sintering temperature, was introduced to TiO2 paste. To reduce the recombination of injection electrons, different sizes of polystyrene sphere were added to the TiO2 photoanode. The PS spheres were removed by NMP solution and then cleaned using different solvents. We found that the flexible DSSC with the efficiency of 3.23% can be attained when 250 nm PS spheres were added to TiO2 photoanode. In addition, the open circuit voltage is increased from 0.73 V to 0.92 V as compared with the photoanode without adding PS spheres. The efficiency of the cell under bending was tested and an efficiency of 2.82% was obtained at the bending angle of 60o.
[1] J. L. Sawin, E. Martinot, V. L. O’Brienet, J. Roussell, D. Barnes, C. Flavin, “Renewables 2010 Global Status Report”, REN21 (2011).
[2] V. Gray, et al, “Climate Change 2007:The Physical Science Basis Summary for Policymakers”, IPCC 4th Assessment Report (2007).
[3] G. Kukla, T. R. Karl, “NIGHTTIME WARMING AND THE GREEN HOUSE EFFECT”, Environmental Science Technology, 27 (1993) 1468–1474.
[4] KRI Report No. 8 : Solar cells, 2005.
[5] J. S. Hernández, M.E. Calixto, M. T. Velazquez, et al, “Cu(In,Ga)Se2 thin films processed by co-evaporation and their application into solar cells”, Revista Mexicana de Fısica, 57 (2011) 441–445.
[6] G. E. Tulloch, “Light and energy–dye solar cells for the 21st century”, Chemistry, 164 (2004) 209–219.
[7] K. Hara, N. Koumura, “Organic dyes for efficiency and stable dye-sensitized solar cells ”, Material Matters, 4 (2009) 92.
[8] X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, O. Sato, A. Fujishima, “Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films”, Solar Energy Material & Solar Cells, 81 (2004) 197–203.
[9] G.P. Smestad, M. Grätzel, “Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter”, Journal of Chemical Education, 75 (1998) 752–756.
[10] Y. Saito, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, “Morphology control of mesoporous TiO2 for performance of dye-sensitized solar cells”, Solar Energy Material & Sol Cells, 83 (2004) 1–13.
[11] J. H. Yoon, S. R. Jang, R Vittal, J. Lee, K. J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-sensitized solar cells”, Journal Photochemistry Photobiology. A, 180 (2006) 184–188.
[12] S.H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency”, Advanced Material, 20 (2008) 54–58.
[13] K. M. Lee, V. Suryanarayanan, K. C. Ho, “A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells”, Solar Energy Material & Solar Cells, 91 (2007) 1416–1420.
[14] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films, 516 (2008) 4613–4619.
[15] P. Yao, L. Wang, E. Chiang, K. Ho, Y. Chen, “Nanocrystalline TiO2 for porphyrin-sensitized solar cells: a preliminary study”, Journal of Science and Engineering Technology, l 4 (2008) 35–42.
[16] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania nanotubes prepared by chemical processing”, Advanced Materials, 11 (1999) 1307-1311.
[17] Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires”, Chemical Physics Letters, 365 (2002) 300-304.
[18] H. W. Chen, C. Y. Hsu, J. G. Chen, K. M. Lee, C. C. Wang, K. C. Huang, K. C. Ho, “Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods”, Journal of Power Sources, 195 (2010) 6225-6231.
[19] P. Sawunyama, A. Yasumori, K. Okada, “The Nature of Multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, 33 (1998) 795-801.
[20] S. B. Amor, G. Baud, J. P. Besse, M. Jacquet, “Elaboration and characterization of titania coatings”, Thin Solid Films, 293 (1997) 163-169.
[21] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of titanium oxide nanotube”, Langmuir, 14 (1998) 3160-3163.
[22] L. Meng, A. Ma, P. Ying, Z. Feng, C. Li, “Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells”, Jurnal of Nanoscience and Nanotechnology, 11 (2011) 929–934.
[23] C. P. Hsu, K. M. Lee, J. T. Wei, C. Y. Lin, C. H. Lee, L. P. Wang, S. Y. Tsai, K. C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells”, Electrochimica Acta, 53 (2008) 7514–7522.
[24] P. J. Cameron, L. M. Peter, “Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells”, The Journal of Physical Chemistry B, 107 (2003) 14394-14400.
[25] A. Burke, S. Ito, H. Bach, J. Kwiatkowski, M. Grätzel, “The function of a TiO2 compact layer in dye sensitized solar cells incorporating Planar organic dyes”, Nano Letters, 8 (2008) 977-981
[26] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grätzel, ”Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells”, Chemical Communications, 34 (2005) 4351–4353.
[27] M.Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorganic Chemistry, 44 (2005) 6842 -6851.
[28] Md. K. Nazeeruddin, S.M. Zakeeruddin, J.J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi , K. Schenk , M. Grätzel, “Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell”, Coordination Chemistry Reviews, 248 (2004) 1317-1328.
[29] H. Zabri, F. Odobel, S. Altobello, S. Caramori, C.A. Bignozzi, “Efficient osmium sensitizers containing 2,2’-bipyridine-4,4’-bisphosphonic acid ligand”, Journal of Photochemistry and Photobiology A: Chemistry, 166 (2004) 99-106.
[30] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, The Journl of Physical Chemistry B, 107 (2003) 8981-8987.
[31] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells”, Electrochemistry Communications, 9 (2007) 596-598.
[32] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, Kazuhiko Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Solar Energy Material & Solar Cells, 79 (2003) 459–469.
[33] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Péchy, M. Grätzel, “Highly efficient dye-sensitized solar cells based on carbon black counter electrodes”, Journal of The Electrochemical Society, 153 (2006) A2255- A2261.
[34] G. Tsekouras, A. J. Mozer, G. G. Wallace, “Enhanced performance of dye sensitized solar cells utilizing platinum electrodeposit counter electrodes”, Journal of The Electrochemical Society, 155 (2008) K124-K128.
[35] C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode”, Electrochimica Acta, 53 (2008) 2890-2896.
[36] N. Papageorgiou, W. F. Maier, M. Grätzel, “An iodine/triiodide reduction electrocatalyst for aqueous and organic media”, Journal of The Electrochemical Society, 144 (1997) 876-884.
[37] A.D. Pasquier, M. Stewart, T. Spitler, M. Coleman, “Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes”, Solar Energy Material & Solar Cells, 93 (2009) 528-535.
[38] M. Grätzel, “Convversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 164 (2002) 3–14.
[39] G. Oskam, B. V. Bergeron, G. J. Meyer, P. C. Searson, “Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells”, Journal Physical Chemistry B, 105 (2001) 6867–6873.
[40] J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. G. Sato, “A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells”, Advanced Functional Materials, 17 (2007) 2645-2652.
[41] L. Yang, Z. Zhang, S. Fang, X. Gao, M. Obata, “Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector”, Solar Energy, 81 (2007) 717-722.
[42] A. Hinsch, R. Kinderman, J. Kroon, A. Meyer, T. Meyer, R. Niepmann, J. V. Roosmalen, “ Long term stability of dye-sensitized solar cells for large area power applications (LOTS-DSC)”, 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow (2000) 1–7.
[43] H. Pettersson, T. Gruszecki, “Long term stability of low-power dye-sensitized solar cells prepared by industrial methods”, Solar Energy Materials & Solar cells, 70 (2001) 203-212.
[44] R. Kawano, H. Matsui, C. Matsuyama, A. Sato, Md. A. B. H. Susan, N. Tanabe, M. Watanabe, “High performance dye-sensitized solar cells using ionic as their electrolytes”, Journal of Photochemistry and Photobiology A:Chemistry, 164 (2004) 87–92.
[45] S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagide, “Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems”, Journal physical chemistry B, 106 (2002) 2967–2972.
[46] H, Kusama, H. Arakawa, “Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance”, Journal of photochemistry and Photobiology A:Chemistry, 160 (2003) 171–179.
[47] H. Kusama, H. Arakawa, “Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance”, 162 (2004) 441–448.
[48] F. N. Mohammadi, H. T. Nguyen, G. BZoschloo, T. Lund, “An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butyl-pyridine”, Journal of photochemistry and photobiology A:Chemistry, 187 (2007) 348 –355.
[49] A. J. Bard, L. R. Faulkner, “ Electrochemical methods:fundamentals and applications-2nd ed.”, John wiley, New York (2001) 368–416.
[50] N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Applied Physics Letters, 84 (2004) 2433–2435.
[51] 胡啟章, “電化學原理與方法”, 五南圖書出版公司 (2002).
[52] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, “Highly efficient photo-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells”, Solar Energy Material & Solar Cells, 64 (2000) 115-134.
[53] T. H. Tsai, S. C. Chiou, S. M. Chen, “Enhanced of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode”, International Journal Electrochemistry Science, 6 (2011) 3333–3343.