研究生: |
張銀谷 Chang, Ingram Yin-Ku |
---|---|
論文名稱: |
應用於金氧半電晶體閘極氧化層的高介電常數薄膜之電性研究 An Investigation on the Electrical Properties of High Dielectric Constant Films for the Application of Gate Dielectric of Metal-Oxide-Semiconductor Field Effect Transistors |
指導教授: |
李雅明
Lee, Joseph Ya-min |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 氧化鋁鑭 、堆疊式氧化鉿/氧化鍶 、電流傳導機制 、電子遷移率衰減 、閘極二極體 、氧化釤 |
外文關鍵詞: | LaAlO3, laminated HfO2/CeO2, conduction mechanisms, electron mobility degradation, gated diode, Sm2O3 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗製作利用氧化鋁鑭 (LaAlO3)、堆疊式氧化鉿 (HfO2)/氧化鍶 (CeO2)、與氧化釤 (Sm2O3)介電材料做為絕緣層的金氧半電容器與電晶體並探討電流傳導機制、薄膜與矽基材的接面特性與電子遷移率衰減的機制。所有的介電薄膜都是利用高頻磁控濺鍍器濺鍍而成。物性分析採用X光繞射儀 (XRD)、二次質譜分析儀 (SIMS)、X光電子頻譜儀 (XPS)與穿隧式電子示波器 (TEM)。氧化鋁鑭具有很高的結晶溫度,經過濺鍍後退火溫度1000度5秒後依然保持非晶態。在電容器的電性分析上,氧化鋁鑭的介電係數為17.5。其有相對低的漏電流密度,在電壓為-1 V時為7.6×10-5 A/cm2,這是因為氧化鋁鑭與鋁電極有很大的電子障礙高度1.8 eV。而電子障礙高度與電子有效質量是利用電流傳導機制中的蕭基發射Schottky emission與Fowler-Nordheim 穿隧計算出來的,其值為分別為1.12 eV 與0.27 倍的真空電子質量 (m0)。在氧化鋁鑭與矽基材間的接面特性上,表面的復合速度 (surface-recombination velocity, s0)、少數載子的生命時間 (minority carrier lifetime, τ0,FIJ)、還有有效的表面缺陷截面積 (effective capture cross section of surface state, σs)參數都是利用分析電晶體的閘極二極體特性而得到的。在電子遷移率的研究上,利用變溫從11K 到300 K對電晶體的影響,臨界電壓 (threshold voltage) (□VT/□T)會隨著溫度上升而下降,變化率為-1.38 mV/K,而電子遷移率會因材料與矽基材間的粗糙度限制而變差,隨著電場強度有著Eeff-0.66的關係。 而聲子散射 (phonon scattering) 在溫度變化從300 K到400 K有著T-5.6的關係。
利用堆疊式氧化鉿 (HfO2)/氧化鍶 (CeO2)與矽基材的接面研究上,表面缺陷密度(Dit) 為9.78x1011 cm-2 ∙ eV-1,表面的復合速度(s0)與少數載子的生命時間(τ0,FIJ)分別為6.11×103 cm/s 與1.8×10-8 s。有效的表面缺陷截面積(σs)為7.69×10-15 cm2。
利用氧化釤 (Sm2O3)薄模制作的電容器,分析其電流傳導機制,在溫度從325 K到500 K間,電場從0.08 到 0.81 MV/cm間,主要的電流傳導機制為蕭基發射Schottky emission,在溫度為77 K電場大於 0.9 MV/cm時,主要的電流傳導機制為Fowler-Nordheim 穿隧機制,而電子障礙高度與電子有效質量則是利用蕭基發射Schottky emission與Fowler-Nordheim 穿隧分析中計算出來的,其值為分別為0.82 eV 與0.13 倍的真空電子質量 (m0)。
In our work, metal-oxide-semiconductor capacitors and transistors with LaAlO3 (LAO), laminated HfO2/CeO2, and Sm2O3 gate dielectrics were fabricated. The current conduction mechanisms, the interfacial properties, and the electron mobility degradation mechanisms were studied. The dielectric films were deposited by radio frequency magnetron sputtering and examined by x-ray diffraction (XRD), secondary ion mass spectroscopy (SIMS), x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The LaAlO3 films remained amorphous with post-deposition annealing up to 1000 °C for 5 s. The dielectric constant of LAO capacitors was 17.5. The leakage current density was relatively low at 7.6×10-5 A/cm2 for a voltage bias of -1 V due to the high electron barrier height of 1.8 eV at the Al/LaAlO3 interface. The Al/LaAlO3 barrier height and the effective electronic mass calculated from from Schottky emission and Fowler-Nordheim tunneling were 1.12 eV and 0.27 m0, respectively. The interfacial properties such as the surface-recombination velocity, the minority-carrier lifetime, and the effective capture cross section of surface states were extracted from the gated-diode measurement. The temperature dependence of electron mobility degradation mechanisms was studied from 11 K to 400 K. The rate of threshold voltage change with temperature (□VT/□T) was -1.38 mV/K. The electron mobility limited by surface roughness was proportional to Eeff-0.66 in the electric field of 0.93 MV/cm<Eeff<2.64 MV/cm at 300 K and the phonon scattering was proportional to T-5.6 between 300 K and 400 K.
As for the interfacial properties of the laminated HfO2/CeO2/Si interface, the surface states density Dit was 9.78x1011 cm-2 ∙ eV-1. The surface-recombination velocity (s0) and the minority carrier lifetime in the field-induced depletion region (τ0,FIJ) measured from gated-diodes were about 6.11×103 cm/s and 1.8×10-8 s, respectively. The effective capture cross section of surface state (σs) was determined to be about 7.69×10-15 cm2.
As for the conduction mechanisms in Sm2O3 thin films, the dominant conduction mechanism in the temperature range from 325 K to 500 K and at the electrical field from 0.08 to 0.81 MV/cm was Schottky emission. At 77 K and with the electrical field above 0.9 MV/cm, the conduction mechanism was Fowler-Nordheim tunneling. The Al/Sm2O3 electron barrier height and the effective electronic mass calculated from the conduction mechanisms were 0.82 eV and 0.13m0, respectively.
1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp. 5243-5275, May. 2001.
2. R. M. Wallace and G. D. Wilk, “High-kappa dielectric materials for microelectronics,” Crit. Rev. Solid State, vol. 28, pp. 231-285, 2003.
3. R. M. Wallace and G. Wilk, “Alternative gate dielectrics for microelectronics,” MRS Bull., vol. 27, pp. 186-187, Mar. 2002.
4. S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s”, IEEE Electron Device Lett., vol. 18, pp. 209-211, May. 1997.
5. G. Timp, A. Agarwal, F. H. Baumann, T. Boone, M. Buonanno, R. Cirelli, V. Donnelly, M. Foad, D. Grant, M. Green, H. Gossmann, S. Hillenius, J. Jackson, D. Jacobson, R. Kleiman, A. Kornblit, F. Klemens, J. T. C. Lee, W. Mansfield, S. Moccio, A. Murrel, M. O’Malley, J. Rosamilia, J. Sapjeta, P. Silverman, T. Sorsch, W. W. Tai, D. Tennant, H. Vuong, and B. Weir, “Low leakage, ultra-thin gate oxides for extremely high performance sub-100 nm nMOSFETs,” Tech. Dig. Int. Electron Devices Meet. 1997, p. 930.
6. J. H. Stathis and D. J. Dimaria, “Reliability projection for ultra-thin oxide at low voltage,” Tech. Dig. Int. Electron Devices Meet. 1998, p. 167.
7. R. W. Mutro, M. I. Gardner, G. A. Brown, P. M. Zeitzoff, and H. R. Huff, “Challenges in gate stack engineering,” Solid State Technol. 46, 43 (2003).
8. J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Eur. Phys. J. Appl. Phys., vol. 28, pp. 327-396, 2006.
9. J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and characterization of Si-MISFET’s with PECVD amorphous Ta2O5 gate insulator,” IEEE Electron Device Lett., vol. 18, p. 447, 1997.
10. Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage current comparison between ultra-thin Ta2O5 films and conventional gate dielectrics,” IEEE Electron Device Lett., vol. 19, p. 341, 1998.
11. D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor characterization with Ta2O5 gate dielectric,” IEEE Electron Device Lett., vol. 19, p. 441, 1998.
12. J. C. Yu, B. C. Lai, and J. Y. M. Lee, “Fabrication and characterization of metal-oxide-semiconductor field-effect transistors and gated diode using Ta2O5 gate oxide,” IEEE Electron Device Lett., vol. 21, pp. 537-539, 2000.
13. B. C. M. Lai, N. H. Kung, and J. Y. M. Lee, “A study on the capacitor-voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications,” J. Appl. Phys., vol. 85, p. 4087, 1999.
14. B. C. Lai, J. C. Yu, and J. Y. M. Lee, “Ta2O5/silicon barrier height measured from MOSFETs fabrication with Ta2O5 gated dielectric,” IEEE Electron Device Lett., vol. 22, p. 221, 2001.
15. C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, p. 4823-4829, May 1998.
16. S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter and J. Yan, “MOSFET transistor fabrication with high permittivity TiO2 dielectric,” IEEE Electron Device Lett., vol. 44, p. 104-109, Jan. 1997.
17. B. He, T. Ma, S. A. Campbell and W. L. Gladfclter, “A 1.1 nm oxide equivalent gate insulator formed using TiO2 on nitrided silicon,” Tech. Dig. Int. Electron Devices Meet., 1998, p. 1038.
18. L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris, R. L. Opila, P. J. Silverman, T. W. Sorsch, and G. R. Weber, “Gate quality doped high κ film for CMOS beyond 100 nm: 3-10 nm Al2O3 with low leakage and low interface states,” Tech. Dig. Int. Electron Devices Meet., 1998, p. 605.
19. E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. Dimaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D. Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L-Å Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta, and A. Ajmera, “Ultrathin high-κ gate stacks for advanced CMOS devices,” Tech. Dig. Int. Electron Devices Meet., 2001, p. 451.
20. J. P. Locquet, C. Marchiori, M. Sousa, and J. Fompeyrine, “High-κ dielectrics for the gate stack,” J. Appl. Phys., vol. 100, 051610, pp. 1-14, Sep. 2006.
21. D. Ceresoli and D. Vanderbilt, “Structural and dielectric properties of amorphous ZrO2 and HfO2,” Phys. Rev. B, vol. 74, 125108, pp. 1-6, Sep. 2006.
22. M. Wu, Y. I. Alivov, and H. Morkoc, “High-κ dielectrics and advanced channel concepts for Si MOSFET,” J. Mater. Sci: Mater. Electron, vol. 19, pp. 915-951, Oct. 2008.
23. L. Kang, Y. Jeon, K. Onishi, B. H. Lee, W. J. Qi, R. Nieh, S. Gopalan, and J. C. Lee, “Single-layer Thin HfO2 gate dielectric with n+-polysilicon gate,” IEEE Symp. VLSI Tech. Dig., 2000, p. 44.
24. S. J. Lee, H. F. Luan, C. H. Lee, T. S. Jeon, W. P. Bai, Y. Senzaki, D. Roberts, and D. L. Kwong, “Performance and reliability of ultra thin CVD HfO2 gate dielectrics with dual poly-Si gate electrodes,” IEEE Symp. VLSI Tech. Dig., 2001, p. 133.
25. L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Lett., vol. 21, p. 181, 2000.
26. B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gated dielectric application,” Tech. Dig. Int. Electron Devices Meet., 1999, p. 133.
27. S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang, and H. Hwang, “Excellent electrical characteristics of lanthanide (Pr, Nd, Sm, Gd, Dy) oxide and lanthanide-doped oxide for MOS gate dielectric applications,” Tech. Dig. Int. Electron Devices Meet., 2001, p. 471.
28. S. Ohmi, H. Yamamoto, J. Taguchi, K. Tsutsui, and H. Iwai, “Effects of post dielectric deposition and post metallization annealing processes on metal/Dy2O3/Si(100) diode characteristics,” Jpn. J. Appl. Phys. Part 1, vol. 48, pp. 1873-1878, Apr. 2004.
29. H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, and Y. Yoshihara, “Advanced gated dielectric materials for sub-100 nm CMOS,” Tech. Dig. Int. Electron Devices Meet., 2002, p. 625.
30. N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B. Johansson, and B. I. Lundqvist, “Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles,” Phys. Rev. B, vol. 64, p. 115108, Sep. 2001.
31. V. A. Rozhkov, V. P. Goncharov, and A. Y. Trusova, “Electrical and photoelectrical properties of MIS structures with rare earth oxide films as insulator,” Proceedings of the 1995 IEEE Conference on Conduction and Breakdown in Solid Dielectrics, p. 552-555, 1995.
32. V. A. Rozhkov, A. I. Petrov, V. P. Goncharov and A.Y. Trusova, “Electrical breakdown of rare earth oxide insulator thin films in silicon MIS structures,” Proceeding of the 1995 IEEE Conference on Conduction and Breakdown in Solid Dielectrics, pp. 418-422, 1995.
33. V. A. Rozhkov, A. Y. Trusova, I. G. Berezhnoy, “Silicon MIS structures using samarium oxide films,” Thin Solid Films, vol. 325, pp. 151-155, Feb. 1998.
34. K. H. Kim, H. J. Won, and J. S. Choi, “Electrical conductivity of samarium sesquioxide,” J. Phys. Chem. Solids, vol. 45, pp. 1259-1264, 1984.
35. A. I. Kingon, J. P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, vol. 406, pp. 1032-1038, Aug. 2000.
36. K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, pp. 2757-2276, Nov. 1996.
37. W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, pp. 597-599, Oct. 2002.
38. J. C. Wang, Y. P. Hung, C. L. Lee, and T. F. Lei, “Improved characteristics of ultrathin CeO2 by using postnitridation annealing,” J. Electrochem. Soc., vol. 151, pp. F17-F21, 2004.
39. Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown of Si (111),” Appl. Phys. Lett., vol. 81, pp. 4386-4388, 2002.
40. A. A. Dakhel, “Dielectric and optical properties of samarium oxide thin films,” J. Alloy. Comp., vol. 365, pp. 233-239, 2004.
41 T. Hori, Gate Dielectrics and MOS ULSIs: Principles, Technologies, and Applications, Springer-Verlag, Berlin, Germany, 1997.
42 J. F. Scott, Feroelectric Memories, Springer-Verlag, Berlin, 2000.
43 J. D. Park, J. W. Kim, and T. S. Oh, “Characteristics of the MFIS-FET structures processed using SBT ferroelectric thin films,” Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics, vol. 2, p. 637, 2000.
44. A. D. Li, Q. Y. Shao, H. Q. Ling, J. B. Cheng, D. Wu, Z. G. Liu, N. B. Ming, C. Wang, H. W. Zhou, and B. Y. Nguyen, “Characteristics of LaAlO3 gate dielectrics on Si grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 83, pp. 3540-3542, Oct. 2003.
45. X. B. Lu, H. B. Lu, Z. H. Chen, X. Zhang, R. Huang, H. W. Zhou, X. P. Wang, B. Y. Nguyen, C. Z. Wang, W. F. Xiang, M. He, ang B. L. Cheng, “Field-effect transistors with LaAlO3 and LaAlOxNy gate dielectrics deposited by laser molecular-beam epitaxy,” Appl. Phys. Lett., vol. 85, pp. 3543-3545, Oct. 2004.
46. T. Busani and R. A. B. Devine, “Molecular volume and electronic and vibrational polarizibilities for amorphous LaAlO3,” J. Appl. Phys., vol. 96, pp. 6642-6647, Dec. 2004.
47. R. A. B. Devine, “Infrared and electrical properties of amorphous sputtered (LaxAl1-x)2O3 films,” J. Appl. Phys., vol. 93, pp. 9938-9942, Jun. 2003.
48. P. Sivasubramani, J. Kim, M. J. Kim, B. E. Gnade, and R. M. Wallace, “Effect of nitrogen incorporation on the thermal stability of sputter deposited lanthanum aluminate dielectrics on Si (100),” Appl. Phys. Lett., vol. 89, p.152903, Oct. 2006.
49. M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor-deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films, vol. 41, pp. 247-259, Mar. 1977.
50. F. C. Chiu, S. A. Lin, J. Y. M. Lee, “Electrical properties of metal-HfO2-silicon system measured from metal-insulator-semiconductor capacitors and metal-insulator-semiconductor field-effect transistors using HfO2 gate dielectric,” Microelectronics Reliability, vol. 45, pp. 961-964, May 2005.
51. K. Karakaya, A. Zinine, J. G. M. van Berkum, M. A. Verheijen, Z. M. Rittersma, G. Rijnders, and D. H. A. Blank, “Characterization of laminated CeO2-HfO2 high-κ gate dielectrics grown by pulsed laser deposition,” J. Electrochem. Soci., vol. 153, pp. F233-F236, 2006.
52. Y. R. Hwang, I. Y. K. Chang, M. T. Wang, and J. Y. M. Lee, “The fabrication and characterization of metal-oxide-silicon capacitors and field-effect transistors using Dy2O3 and Sm2O3 gate dielectrics,” Integrated Ferroelectrics, vol. 97, pp. 111-120. 2008.
53. L. F. Edge, S. A. Chambers, E. Cicerrella, J. L. Freeouf, B. Holländer, J. Schubert, and D. G. Schlom, “Measurement of the band offsets between amorphous LaAlO3 and silicon,” Appl. Phys. Lett., vol. 84, pp. 726-728, Feb. 2004.
54. P. W. Peacock and J. Robertson, “Bonding, Energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces,” Phys. Revi. Lett., vol. 92, p. 057601, Feb. 2004.
55. H. W. Chen, S. Y. Chen, K. C. Chen, H. S. Huang, C. H. Liu, F. C. Chiu, K. W. Liu, K. C. Lin, L. W. Cheng, C. T. Lin, G. H. Ma, and S. W. Sun, “Electrical characterization and carrier transportation in Hf-silicate dielectrics using ALD gate stacks for 90 nm node MOSFETs,” Appl. Surf. Scie., vol. 254, pp. 6127-6130, 2008.
56. F. C. Chiu, “Current conduction mechanisms in CeO2 thin films,” Electrochem. and Solid State Lett., vol. 11, pp. H135-H137, 2008.
57. V. A. Rozhkov, A. Y. Trusova, and I. G. Berezhnoi, “Energy barriers and trapping centers in silicon metal-insulator-semiconductor structures with samarium and ytterbium oxide insulators,” Tech. Phys. Letters., vol. 24, pp. 217-219, Mar. 1998.
58. X. B. Lu, Z. G. Liu, Y. P. Wang, Y. Yang, X. P. Wang, H. W. Zhou, and B. Y. Nguyen, “Structure and dielectric properties of amorphous LaAlO3 and LaAlOxNy films as alternative gate dielectric materials,” J. Appl. Phys., vol. 94, p. 1229-1234, Jul. 2003.
59. J. Robertson and B. Falabretti, “Band offset of high-κ gate oxides on III-V semiconductors,” J. Appl. Phys., vol. 100, p. 014111, 2006.
60. E. Cicerrella, J. L. Freeouf, L. F. Edge, D. G. Schlom, T. Heeg, J. Schubert, and S. A. Chambers, “Optical properties of La-based high-κ dielectric films,” J. Vac. Sci. Technol. A, vol. 23, p. 1676-1680, Ocb. 2005.
61. A. Pfau and K. D. Schierbaum, “The electronic structure of stoichiometric and reduced CeO2 surfaces-an XPS, UPS and HREELS study,” Surface Science, vol. 321, pp. 71-80, Dec. 1994.
62. K. Karakaya, B. Barcones, Z. M. Rittersma, J. G. M. van Berkum, M. A. Verheijen, G. Rijnders, and D. H. A. Blank, “Electrical and structural characterization of PLD grown CeO2–HfO2 laminated high-κ gate dielectrics,” Mater. Sci. Semi. Pro. 9, pp. 1061-1064, Dec. 2006.
63. D. A. Neumayer and E. Cartier, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys., vol. 90, pp. 1801-1808, Aug. 2001.
64. H. Kim, P. C. Mclntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett., vol. 82, pp. 106-108, Jan. 2003.
65. H. Wang, Y. Wang, J. Feng, C. Ye, B. Y. Wang, H. B. Wang, Q. Li, Y. Jiang, A. P. Huang, and Z. S. Xiao, “Structure and electrical properties of HfO2 high-κ films prepared by pulsed laser deposition on Si (100),“ Appl. Phys. A, vol. 93, pp. 681-684, Jun. 2008.
66. D. F. Yang and L. J. Xue, “Charge trapping in and electrical properties of pulsed laser deposited Sm2O3 films,” J. Appl. Phys., vol. 93, pp. 9389-9391, Jun. 2003.
67. X. B. Lu, X. Zhang, R. Huang, H. B. Lu, Z. H. Chen, W. F. Xiang, M. He, B. L. Cheng, H. W. Zhou, X. P. Wang, and C. Z. Wang, “Thermal stability of LaAlO3/Si deposited by laser molecular-beam epitaxy,” Appl. Phys. Lett., vol. 84, pp. 2620-2622, Apr. 2004.
68. Q. Y. Shao, A. D. Li, J. B. Cheng, H. Q. Ling, D. Wu, Z. G. Liu, Y. J. Bao, M. Wang, N. B. Ming, C. Wang, H. W. Zhou, and B. Y. Nguyen, “Growth behavior of high κ LaAlO3 films on Si by metalorganic chemical vapor deposition for alternative gate dielectric application,” Appl. Sur. Sci., vol. 250, pp. 14-20, Jan. 2005.
69. L. Yan, H. B. Lu, G. T. Tan, F. Chen, Y. L. Zhou, G. Z. Yang, W. Liu, Z. H. Chen, “High quality, high-κ gate dielectric: amorphous LaAlO3 thin films grown on Si (100) without Si interfacial layer,” Appl. Phys. A, vol. 77, pp. 721-724, Feb. 2003.
70. L. Becerra, C. Mercking, N. Baboux, C. Plossu, O. Marty, M. El-Kazzi, G. Saint-Girons, B. Vilquin, and G. Hollinger, “Ultralow equivalent oxide thickness obtained for thin amorphous LaAlO3 layers grown on Si (001),” Applied Physics Letters, vol. 91, p. 192909, Nov. 2007.
71. S. M. Sze, Physics of semiconductor Devices, 2nd ed. (Widely, New York, 1981).
72. M. Lenzlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” J. Appl. Phys., vol. 40, pp. 278-283, Jan. 1969.
73. J. G. Simmons, “Conduction in thin dielectric films,” J. Phys. D, vol. 4, pp. 613-657, 1971.
74. A. Rose, “Space-charge-limited currents in solids,” Phys. Rev., vol. 97, pp. 1538-1544, 1955.
75. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
76. T. P. C. Juan, S. M. Chen, and J. Y. M. Lee, “Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53, Ti0.47)O3 thin films,” J. Appl. Phys., vol. 95, pp. 3120-3125, Mar. 2004.
77. M. T. Wang, T. H. Wang, and J. Y. M. Lee, “Electrical conduction mechanism in metal-ZrO2-silicon capacitor structures,” J. Electrochemical Soci., vol. 152, pp. G182-G185, Jan. 2005.
78. F. C. Chiu, H. W. Chou, and J. Y. M. Lee, “Electrical conduction mechanisms of metal/La2O3/Si structure,” J. Appl. Phys., vol. 97, p. 103503, May 2005.
79. F. C. Chiu, “Electrical characterization and current transportation in metal/Dy2O3/Si structure,” J. Appl. Phys., vol.102, p. 044116, Aug. 2007.
80. L. F. Edge, D. G. Schlom, R. T. Brewer, Y. J. Chabal, J. R.Williams, S. A. Chambers, C. Hinkle, G. Lucovsky, Y. Yang, S. Stemmer, M. Copel, B. Holländer, and J. Schubert, “Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on Si,” Appl. Phys. Lett., vol. 84, pp. 4629-4631, Jun. 2004.
81. V. Edon, M. C. Hugon, B. Agius, C. Cohen, Ch. Cardinaud, and C. Eypert, “Structural and electrical properties of the interfacial layer in sputter deposited LaAlO3/Si thin films,” Thin Solid Films, vol. 515, pp. 7782-7789, Apr. 2007.
82. C. T. Sah, Fundamental of Solid-State Electronics. Singapore: World Scientific, 1991, p. 661.
83. A. S. Grove and D. J. Fitzgerald, “Surface effects on p-n junctions: Characteristics of surface space-charge regions under nonequilibrium conditions,” Solid State Electron., vol. 9, pp. 783-806, Aug. 1966.
84. T. Giebel and K. Goser, “Hot-carrier degradation of n-channel MOSFETs characterized by a gated diode measurement technique,” IEEE Electron Device Lett., vol. 10, pp. 76-78, Feb. 1989.
85. P. L. Castro and B. E. Deal, “Low-temperature reduction of fast surface state associated with thermally oxidized silicon,” J. Electrochem. Soc.:Solid State Sci., vol. 118, pp. 280-286, 1971.
86. P. C. T. Roberts and J. D. E. Beynon, “An experimental determination of carrier lifetime near Si-SiO2 interface,” Solid State Electron., vol. 16, pp. 221-227, 1973.
87. M. Randolph and L. G. Meiners, “Hole mobilities and surface generation current of CVD insulators on germanium,” J. Electrochem. Soc., vol. 136, pp. 2699-2705, Sep. 1989.
88. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. New York: Wiley, 2006, p. 354.
89. F. C. Chiu, W. C. Shih, J. Y. M. Lee, and H. L. Hwang, “An investigation of surface state capture cross-sections for metal-oxide-semiconductor field-effect transistors using HfO2 gate dielectrics,” Microelectron. Reliab., vol. 47, pp. 548-551, 2007.
90. C. H. Liu and F. C. Chiu, “Electrical characterization of ZrO2/Si interface properties in MOSFETs with ZrO2 gate dielectrics,” IEEE Electron Device Lett., vol. 26, pp. 62-64, 2007.
91. C. H. Chen, I. Y. K. Chang, F. C. Chiu, and J. Y. M. Lee, “Electrical characterization of CeO2/Si interface properties of metal-oxide-semiconductor field-effect transistors with CeO2 gate dielectric,” Appl. Phys. Lett., vol.92, p. 043507, 2008.
92. P. F. Lee, J. Y. Dai, H. L. W. Chan, and C. L. Choy, “Two-step interfacial reaction of HfO2 high-κ gate dielectric thin films on Si,” Ceramic In., vol. 30, pp. 1267-1270, 2004.
93. S. Saito, D. Hisamoto, S. Kimura, and M. Hiratani, “Unified mobility model for high-κ gate stacks,” Tech. Dig. Int. Electron Devices Meet., 2003, p. 797.
94. M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with high-κ insulator: the role of remote phonon scattering,” J. Appl. Phys., vol. 90, pp. 4587-4608, Nov. 2001.
95. S. Saito, Kazuyoshi Torii, Y. Shimamoto, O. Tonomura, D. Hisamoto, T. Onai, M. Hiratani, and S. Kimura, “Remote-charge-scattering limited mobility in field-effect transistors with SiO2 and Al2O3/SiO2 gate stacks,” J. Appl. Phys., vol. 98, p. 113706, Dec. 2005.
96. W. J. Zhu and T. P. Ma, “Temperature dependence of channel mobility in HfO2-gated nMOSFETs,” IEEE Electron Device Lett., vol. 25, pp. 89-91, Feb. 2004.
97. M. Casse, L. Thevenod, B. Guillaumot, L. Tosti, F. Martin, J. Mitard, O. Weber, F. Andrieu, T. Ernst, G. Reimbold, T. Billon, M. Mouis, F. Boulanger, “Carrier transport in HfO2/metal gate MOSFETs” Physical insight into critical parameters,” IEEE Trans. Electron Devices, vol. 53, pp. 759-768, Apr. 2006.
98. O. Weber, M. Casse, L. Thevenod, F. Ducroquet, T. Ernst, S. Deleonibus, “On the mobility in high-kappa/metal gate MOSFETs: Evaluation of the high-kappa phonon scattering impact,” Solid State Electron., vol. 50, pp. 626-631, Apr.2006.
99. H. S. Ho, I. Y. K. Chang, and J. Y. M. Lee, “The temperature dependence of the electron mobility degradation mechanisms in n-channel metal-oxide-semiconductor field effect transistors with ZrO2 and Sm2O3 gate dielectrics,” Appl. Phys. Lett., vol. 91, pp. 173510, Oct. 2007.
100. S. C. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Transaction on Electron Devices, vol. 27, pp. 1497-1508, 1980.
101. C. G. Sodini, T. W. Ekstedt, and J. L. Moll, “Charge accumulation and mobility in thin dielectric MOS transistors,” Solid State Electron., vol. 25, pp. 833-841, 1982.
102. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. (Cambridge, 1998).
103. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFETs 1. Effects of substrate impurity concentration,” IEEE Transaction on Electron Devices, vol. 41, pp. 2357-2362, Dec. 1994
104. W. J. Zhu, J. P. Han, and T. P. Ma, “Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics,” IEEE Trans. Electron Devices, vol. 51, pp. 98-105, Jan. 2004.
105. M. T. Wang, B. Y. Y. Cheng, and J. Y. M. Lee, “Temperature-dependent degradation mechanisms of channel mobility in ZrO2-gated n-channel metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 88, 242905, pp. 1-3, Jun. 2006.
106. Y. Nishikawa, N. Fukushima, N. Yasuda, K. Nakauama, and S. Ikegawa, “Electrical properties of single crystalline CeO2 high-κ gate dielectrics directly grown on Si (111),” Jpn. J. Appl. Phys., vol. 41, pp. 2480-2483, Apr. 2002.
107. S. Logothetidis, P. Patsalas, E. K. Evangelou, N. Konofaos, I. Tsiaoussis, and N. Frangis, “Dielectric properties and electronic transitions of porous and nanostructured cerium oxide films,” Mater. Sci. Eng. B, vol. 109, pp. 69-73, Jun. 2004.