研究生: |
洪至慶 Hong, Chih-Ching |
---|---|
論文名稱: |
Plasmonic-Enhanced Infrared Absorption Signal Optimized by a Prototype of Genetic Algorithm Method |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
陳浩夫
How-Foo Chen 朱立岡 Li-Kang Chu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 102 |
中文關鍵詞: | Plasmonic 、Surface-Enhnaced Infrared Absorption 、Genetic Algorithm |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Vibrational spectroscopy of bio-molecules affords a unique tool to detect chemical fingerprints of a material during the mid-infrared region, prompting it an analytical method of choice for life sciences, medicine, food safety, and biotechnologies. However, the intrinsic cross sections of some molecular vibrations for infrared spectroscopy are rather than small, which limits application of low concentration detection.
To improve the sensitivity, a surface-enhanced infrared absorption (SEIRA) spectroscopy is an engaging method for increasing the prominence of vibrational modes in the infrared spectroscopy. To nowadays, nanostructures with plasmonic resonances have been widely applied to SEIRA spectroscopy such as optical antennas, optical resonators, grating-coupled structures, and so on. These resonant structures can enhance the vibrational features about several orders of magnitude by tuning the plasmonic resonances to the vibrational bands of the molecules. On the other hand, multi-spectral interrogation of vibrational signatures provides an accurate way for determining the molecular composition of a sample in order to confirm the presence of target species, and reduces the number of false positives during bio-sensing experiments. Still, most of plasmonic structures are limited by just a single band response and hence are not suitable for multispectral sensing of different biomolecules at once.
In this research, we will propose a new route to designing a metamaterial-based multi-band infrared absorption device through our home-made genetic algorithm (GA) method in mid-infrared region. This complex structure can provide higher enhancement factor and hot spot density than that of nano-antenna; we started from the optimization process of GA combined with finite-integration-time-domain method, followed by nano-fabrication through electron beam lithography process, and the optical properties of the optimized structure were characterized in infrared region by Fourier transform infrared spectrometer. Finally, the SEIRA activity was demonstrated by spin coating PMMA thin film on the array. Compare the signal with and without an analyte, the enhancement can be achieved about 2.1 at 52 THz.
1. L. B. Ware, and M. A. Matthay, "The Acute Respiratory Distress Syndrome," New England Journal of Medicine 342, 1334-1349 (2000).
2. C. D. Chin, V. Linder, and S. K. Sia, "Lab-on-a-chip devices for global health: Past studies and future opportunities," Lab on a Chip 7, 41-57 (2007).
3. D. Erickson, S. Mandal, A. J. Yang, and B. Cordovez, "Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale," Microfluid Nanofluid 4, 33-52 (2008).
4. H. K. Hunt, and A. M. Armani, "Label-free biological and chemical sensors," Nanoscale 2, 1544-1559 (2010).
5. R. Yan, S. P. Mestas, G. Yuan, R. Safaisini, D. S. Dandy, and K. L. Lear, "Label-free silicon photonic biosensor system with integrated detector array," Lab on a Chip 9, 2163-2168 (2009).
6. J. Homola, "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species," Chemical Reviews 108, 462-493 (2008).
7. J. J. Mock, D. R. Smith, and S. Schultz, "Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles," Nano letters 3, 485-491 (2003).
8. A. Malima, S. Siavoshi, T. Musacchio, J. Upponi, C. Yilmaz, S. Somu, W. Hartner, V. Torchilin, and A. Busnaina, "Highly sensitive microscale in vivo sensor enabled by electrophoretic assembly of nanoparticles for multiple biomarker detection," Lab on a Chip 12, 4748-4754 (2012).
9. Y. Chen, and H. Ming, "Review of surface plasmon resonance and localized surface plasmon resonance sensor," Photonic Sens 2, 37-49 (2012).
10. Y.-T. Chang, Y.-C. Lai, C.-T. Li, C.-K. Chen, and T.-J. Yen, "A multi-functional plasmonic biosensor," Opt. Express 18, 9561-9569 (2010).
11. L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman, "Optofluidic devices and applications in photonics, sensing and imaging," Lab on a Chip 12, 3543-3551 (2012).
12. M. Moskovits, "Surface-enhanced spectroscopy," Reviews of Modern Physics 57, 783-826 (1985).
13. A. Otto, "Surface-enhanced Raman scattering of adsorbates," Journal of Raman Spectroscopy 22, 743-752 (1991).
14. S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
15. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Physical Review Letters 78, 1667-1670 (1997).
16. H. Wang, J. Kundu, and N. J. Halas, "Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate," Angewandte Chemie International Edition 46, 9040-9044 (2007).
17. D. Enders, and A. Pucci, "Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films," Applied Physics Letters 88, - (2006).
18. M. Osawa, "Surface-Enhanced Infrared Absorption," in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer Berlin Heidelberg, 2001), pp. 163-187.
19. R. F. Aroca, D. J. Ross, and C. Domingo, "Surface-Enhanced Infrared Spectroscopy," Applied Spectroscopy 58, 324A-338A (2004).
20. K. Chen, R. Adato, and H. Altug, "Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy," ACS Nano 6, 7998-8006 (2012).
21. A. W. Clark, and J. M. Cooper, "Optical Properties of Multiple-Split Nanophotonic Ring Antennae," Advanced materials 22, 4025-4029 (2010).
22. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, "Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas," ACS Nano 7, 669-675 (2012).
23. T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, "Surface enhanced infrared spectroscopy with gold strip gratings," Opt. Express 21, 9005-9010 (2013).
24. J. W. Petefish, and A. C. Hillier, "Angle-Tunable Enhanced Infrared Reflection Absorption Spectroscopy via Grating-Coupled Surface Plasmon Resonance," Analytical Chemistry 86, 2610-2617 (2014).
25. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, "Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection," Physical Review Letters 101, 157403 (2008).
26. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Reviews of Modern Physics 82, 2257-2298 (2010).
27. W.-T. Lu, S.-J. Wang, W. Li, Y.-L. Wang, C.-Z. Ye, and H. Jiang, "Fano-type resonance through a time-periodic potential in graphene," Journal of Applied Physics 111, - (2012).
28. P. Bharadwaj, B. Deutsch, and L. Novotny, "Optical Antennas," Adv. Opt. Photon. 1, 438-483 (2009).
29. A. Hartstein, J. R. Kirtley, and J. C. Tsang, "Enhancement of the Infrared Absorption from Molecular Monolayers with Thin Metal Overlayers," Physical Review Letters 45, 201-204 (1980).
30. F. Meng, and A. Pucci, "Growth of silver on MgO(001) and infrared optical properties," physica status solidi (b) 244, 3739-3749 (2007).
31. M. Osawa, K.-I. Ataka, K. Yoshii, and Y. Nishikawa, "Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles," Applied Spectroscopy 47, 1497-1502 (1993).
32. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, "Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach," Nano letters 11, 2835-2840 (2011).
33. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, "Surface-Enhanced Infrared Spectroscopy Using Nanometer-Sized Gaps," ACS Nano 8, 4908-4914 (2014).
34. F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, "Infrared Optical Properties of Nanoantenna Dimers with Photochemically Narrowed Gaps in the 5 nm Regime," ACS Nano 6, 7326-7332 (2012).
35. P. H. C. Eilers, "A Perfect Smoother," Analytical Chemistry 75, 3631-3636 (2003).
36. F. Neubrech, and A. Pucci, "Plasmonic Enhancement of Vibrational Excitations in the Infrared," Selected Topics in Quantum Electronics, IEEE Journal of 19, 4600809-4600809 (2013).
37. Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, "Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared," Sci. Rep. 3 (2013).
38. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Physical Review Letters 100, 207402 (2008).
39. D. J. Kern, and D. H. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave and Optical Technology Letters 38, 61-64 (2003).
40. D. H. Kwon, L. Li, J. A. Bossard, M. G. Bray, and D. H. Werner, "Zero index metamaterials with checkerboard structure," Electronics Letters 43, 9-10 (2007).
41. T.-T. Yeh, S. Genovesi, A. Monorchio, E. Prati, F. Costa, T.-Y. Huang, and T.-J. Yen, "Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials," Opt. Express 20, 7580-7589 (2012).
42. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, "Evolutionary Optimization of Optical Antennas," Physical Review Letters 109, 127701 (2012).
43. D. S. Weile, and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: a review," Antennas and Propagation, IEEE Transactions on 45, 343-353 (1997).
44. M. Davarynejad, M. R. Akbarzadeh-T, and N. Pariz, "A novel general framework for evolutionary optimization: Adaptive fuzzy fitness granulation," in Evolutionary Computation, 2007. CEC 2007. IEEE Congress on(2007), pp. 951-956.
45. A. L. Nelson, G. J. Barlow, and L. Doitsidis, "Fitness functions in evolutionary robotics: A survey and analysis," Robot. Auton. Syst. 57, 345-370 (2009).
46. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
47. H. Fischer, and O. J. F. Martin, "Engineering the optical response ofplasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008).
48. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, "Gap-plasmon nanoantennas and bowtie resonators," Physical Review B 85, 045434 (2012).
49. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
50. L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, "Surface-Enhanced Infrared Absorption Using Individual Cross Antennas Tailored to Chemical Moieties," Journal of the American Chemical Society 135, 3688-3695 (2013).