研究生: |
廖子淳 Liao, Tzu-Chun |
---|---|
論文名稱: |
纖維母細胞於不同圖案氧化矽上的遷移及探索 Migration and exploration of fibroblasts on patterned oxidized silicon surface |
指導教授: |
葉哲良
Yeh, J. Andrew 陳文翔 Chen, Wen-Shiang |
口試委員: |
沈湯龍
Shen, Tang-Long 鄭兆珉 Cheng, Chao-Min 游佳欣 Yu, Jiashing 葉哲良 Yeh, J. Andrew 陳文翔 Chen, Wen-Shiang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 纖維母細胞 、微奈米結構 |
外文關鍵詞: | FDTS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要探討纖維母細胞的遷移,使用兔子關節滑膜的纖維母細胞,HIG-82做為培養的細胞株,基材為矽基板,先以黃光利用黃光微影技術定義出微米柱區域,再配合奈米銀粒子蝕刻,製作出奈米結構週期結構的矽基材表面,最後,以分子氣相沈積方式,在已蝕刻的奈米表面鍍上FDTS疏水層,在設計上,微米柱間距並不等向,列間距為20 到60微米,行間距則是固定為200微米。
12小時的培養後,可以發現纖維母細胞(HIG-82)可以不會跨越大於45微米的間距,但是對於45微米的間距卻是可以跨越,並連接在一起,形成由細胞構成的線,這條線的長度最長可以到達1000微米。此外,在短時間的觀察中,在微米柱上的細胞會伸出觸手(fliopodia)感測周圍環境,並在幾個小時內連接在一起。這個結果可以幫助我們了解細胞的遷移與生長,微奈米結構的設計更可以讓細胞生長接近生理的狀況。
關鍵字:纖維母細胞,微奈米結構
In this study, the migration of HIG-82 fibroblasts can be controlled by nano/mirco patterned oxidized silicon surface in vitro. The microposts were defined through photolithography and silver nanoparticles assisted etching was used to produce the nanostuctures. After that, the hydrophobic chemical was coated on the surface of nanostructures to form hydrophilic/hydrophobic composite structures. In order to investigate cell anisotropic migration, the spacing of micropost between columns and rows was designed to have various distances. The distances between columns ranged from 20 to 60 μm while the distance between rows was kept constant at 200 μm. In this research, we discovered that when the distances of micropost increase, the cells would hardly migrate from one post to another. If the distance of micropost is over than 45 μm, the cells almost cannot cross the gap. The cell can form a long line which is up to 1000 μm in 12 hours while the gap is less than 45μm. The process of cell fusing is also investigated. Cells expanded fliopodia to detect environment and connected to each other in few hours. In conclusion, this study implicates that the migration and exploration of fibroblasts can be observed on the patterned oxidized silicon surface. The cells growth direction can also be controlled using this kind of patterns.
Keywords: fibroblast, nanostructure, FDTS
Reference
1. Martin, P. Wound healing — aiming for perfect skin regeneration. Science. 1997, 276, 75-81.
2. Maheshwari, G.; Wells, A.; Griffith, L.G.; and Lauffenburger, D. A. Biophysical integration of effects of epidermal growth factor and fibronectin on fibroblast migration. Biophys. J.. 1999, 76, 2814-2823.
3. Miguel, M.-M.; Joachim, S.; and Frederick, G. Collagen fibril flow and tissue translocation coupled to fibroblast migration in 3D collagen matrices. Molecular Biology of the Cell. 2008, 19, 2051-2058.
4. Ghersi, G.; Dong, H.; Goldstein, L. A.; Yeh, Y.; Hakkinen, L.; Larjava, H. S.; and Chen, W. T. Regulation of fibroblast migration on collagenous matrix by a cell surface peptidase complex. J Bio Chem. 2002, 277, 29231-29241.
5. Esther, R.; Irene, F.; Michael, O.; Thomas, P.; Steffen, H.; Johannes, P.; Peter, H.; Christoph, R. Johannes, H.; Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials, 2008, 29, 1796-1806.
6. Thomas, P.; Sergii, Y.; Jakub, S.; Johannes, H. Dynamics of the alignment of mammalian cells on a nano-structured polymer surface. Macromo. Symp. 2010, 296, 272-277.
7. Jung, Y.L.; Henry, J.D. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 2007, 13, 1879-1891
8. Choi, C.H.; Sepideh, H.H.; Wu, B.M.; James, C.D.; Ramin, E.B.; Kim, C.J. Cell growth as a sheet on three-dimensional sharp-tip nanostructures. J Biomed Mater Res A 2008, 10, 804-817
9. Huttenlocher, A; Palecek, S.P.;Lui, Q.;Zhangi W.; Mellgreni, R.L., Lauffenburger , D. A.; Ginsberg, M. H.; Horwitz, A.F. Regulation of cell migration by the calcium-dependent protease calpain. J Bio. Chem. 1997, 272, 32719-32722
10. Carragher, N.O; Levkau,B.; Ross, R.;Raines, E.W. Degraded collagen fragments promote rapid disassembly of smooth muscle focal adhesions that correlates with cleavage of pp125FAK, paxillin, and talin. J Cel Bio. 1999, 147, 619-629
11. Frame, M.C.; Fincham, V.J.; Carragher, N.O.; Wyke, J.A. v-Src's hold over actin and cell adhesions. Nat Rev Mol Cell Biol. 2002, 3, 233-245
12. Dormann,D.; Weijer, C.J. Imaging of cell migration. The EMBO Journal. 2006, 25, 3480-3493
13. Geiger, B.; Spatz, J.P.; Bershadsky, A.D.; Environmental sensing through focal adhesions. Nat Rev Mo. Cell Bio. 2009, 10,21-33
14. Arnold, M.; Cavalcanti-Adam, E.A.; Glass, R.; Blummel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J.P. Activation of integrin function by nanopatterned adhesive interfaces. Chem Phys Chem. 2004, 5, 383-388
15. Huang, C.; Bruggemanb, Hydoa, L.M.; Millera, R.T. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp. Cell Res. 2012, 318, 1075-1085
16. Caterson, E.J.; Nesti, L.J.; Li, W.J.; Danielson, K.G.; Albert, T.J.; Vaccaro, A.R.; Tuan, R.S.; Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. Nano Lett., 2009, 9, 1111–1116
17. Calvert, J.W.; Marra,K.G.; Cook, L.; Kumta, P.N.; DiMilla, P.A.; Weiss, L.E. J Biomed Mater Res. 2000, 52, 279-84.
18. Nuttelman,C.R.; Tripodi, M.C.; Anseth, K.S. In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels Tissue Eng Part A. 2008, 14, 2105-19
19. Lynn, A.D.; Kyriakides, T.R.; Bryant, S.J. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels. J Biomed Mate. Re. A, 2010, 93, 941-53.
20. Cushing, M.C.; Anseth, K.S. Hydrogel cell cultures. Science. 2007, 316, 1133-1134
21. Barbanti, S.H; Santos Jr, A.R.; Zavaglia, C.A.C.; Duek, E.A.R. Poly(ε-caprolactone) and poly(D,L-lactic acid-co-glycolic acid) scaffolds used in bone tissue engineering prepared by melt compression–particulate leaching method. J Mater Sci: Mater Med. 2011, 22, 2377–2385
22. Laranjeira, M.S.; Fernandes, M.H.; Monteiro, F.J. Reciprocal induction of human dermal microvascular endothelial cells and human mesenchymal stem cells: time-dependent profile in a co-culture system. Cell Prolif. 2012, 45, 320–334
23. Loo, A.E.K.; Halliwell, B. Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem. Biophys. Res. Commun. 2012, 423, 253-258
24. Harrison, R.G. On the stereotropism of embryonic cells. Science. 1911, 1, 279-281
25. Wejss, P. In vitro experiments on the factors determining the course of the outgrowing nerve fiber. J Exp Zool. 1934, 68, 393-448
26. Turner, S.; Kam, L.; Isaacson, M.; Craighead, H.G.; Shain, W.; Turner, J. Cell attachment on silicon nanostructures. J Vac Sci Technol B. 1997, 15, 2848-54.
27. Dalby, M.J.; Pasqui, D. Affrossman S. Cell response to nano-islands produced by polymer demixing: a brief review. IEEE Proc Nanobiotechnol. 2004, 151, 53-61.
28. Dalby, M.J.; Riehle, M.O.; Sutherland, D.S.; Agheli, H.; Curtis, A.S.G. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. J Biomed Mater Res. 2004, 69A, 314-22.
29. Dalby, M.J.; Berry, C.C.; Riehle, M.O.; Sutherland, D.S.; Agheli, H.; Curtis, A.S.G. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp Cell Res. 2004, 295, 387-94.
30. Arnold, M.; Cavalcanti-Adam, E.A.; Glass, R.; Blummel, J.; Eck, W.; Kantlehner, M. Activation of integrin function by nanopatterned adhesive interfaces. Chem Phys Chem. 2004, 5, 383-8.
31. Wood, M.A.; Wilkinson, C.D.W.; Curtis, A.S.G. The effects of colloidal nanotopography on initial fibroblast adhesion and morphology. IEEE Trans Nanobios. 2006, 5, 20-31.
32. Rice, J.M.; Hunt, J.A.; Gallagher, J.A.; Hanarp, P.; Sutherland, D.S.; Gold, J. Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro. Biomaterials. 2003, 24, 4799-818.
33. Andersson, A.S.; Backhed, F.; Von, E.A.; Richter, D. A.; Sutherland, D.; Kasemo, B. Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials. 2003, 24, 3427-36.
34. Curtis, A.S.G.; Gadegaard, N.; Dalby, M.J.; Riehle, M.O.; Wilkinson, C.D.W.; Aitchison, G. Cells react to nanoscale order and symmetry in their surroundings. IEEE Trans Nanobios. 2004, 3, 61-5.
35. Dalby, M.J.; Gadegaard, N.; Riehle, M.O.; Wilkinson, C.S.W.; Curtis, A.S.G. Investigating filopodia sensing using arrays of defined nano-pits down to 35nm diameter in size. Int J Biochem Cell Biol. 2004, 36, 2005-15.
36. Sapelkin, A.V.; Bayliss, S.C.; Unal, B.; Charalambou, A. Interaction of B50 rat hippocampal cells with stain-etched porous silicon. Biomaterials. 2006, 27, 842-6.
37. Clark, P.; Connolly, P.; Curtis, A.S.G.; Dow, J.A.T.; Wilkinson, C.D.W. Cell guidance by ultrafine topography in vitro. J Cell Sci.1991, 99, 73-7.
38. Karuri, N.W.; Liliensiek, S.; Teixeira, A.I.; Abrams, G.; Campbell, S.; Nealey, P.F. Biological length scale topography enhances cell–substratum adhesion of human corneal epithelial cells. J Cell Sci. 2004, 117, 3153-64.
39. Teixeira, A.I.; Nealey, P.F.; Murphy, C.J. Responses of human keratocytes to micro- and nanostructured substrates. J Biomed Mater Res. 2004, 71A, 369-76.
40. Zhu, B.; Lu, Q.; Yin, J.; Hu, J.; Wang, Z. Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. Tissue Eng. 2005, 11, 825-34.
41. Baac, H.; Lee, J.H.; Seo, J.M.; Park, T.H.; Chung, H.; Lee, S.D. Submicron-scale topographical control of cell growth using holographic surface relief grating. Mater Sci Eng C. 2004, 24, 209-12.
42. Yim, E.K.F.; Reano, R.M.; Pang, S.W.; Yee, A.F.; Chen, C.S.; Leong, K.W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials.2005, 26, 5405-13.
43. Price, R.L.; Ellison, K.; Haberstroh, K.M.; Webster, T.J. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res. 2004, 70A, 129-38.
44. Choi, C.H.; Kim, C.J. Fabrication of dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control. Nanotechnology. 2006, 17, 5326-33.
45. Brunette, D.M.; Hamilton, D.W.; Chehroudi, B. Comparative response of epithelial cells and osteoblasts to microfabricated tapered pit topographies in vitro and in vivo. Biomaterials. 2007, 28, 2281-93.
46. Lim, J.Y.; Hansen, J.C.; Siedlecki, C.A.; Runt, J.; Donahue, H.J. Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface. 2005, 2, 97-108
47. Yang, C.Y.; Huang, L.Y.; Shen, T.L.; Yeh, J.A. Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces, Eur Cells Mater. 2010, 20, 415-430.
48. Yang, C.Y.; Liao, T.C.; Shuai, H.H.; Shen, T.L.; Yeh, J.A., Cheng, C.M. Micropatterning of mammalian cells on inorganic-based nanosponges. Biomaterials. 2012, 33, 4988-4997.
49. Harley, B.A.C.; Kim, H.D.; Zaman, M.H.; Yannas, I.V.; Lauffenburger, D.A.; Gibson, L.J. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J. 2008, 95, 4013-4024.
50. Zhang, X.; Gao, X.; Jiang, L.; Zhang, X.; Qin, J. Nanofiber-modified surface directed cell migration and orientation in microsystem. Biomicrofluidics. 2011, 5, 032007-032016.
51. Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; R. Cingolani, R.; P. Pompa, P. Neurons sense nanoscale roughness with nanometer sensitivity. PNAS. 2010, 107, 6264-6269
52. Whitesides, G.M.; Ostuni, E.; Takayama, S.; Jiang, Xi.; Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–73
53. Jeon, H.;Hidai, H.; Hwang, D.J.; Healy, K.E.; Grigoropoulos, C.P. The effect of micronscale anisotropic cross patterns on fibroblast migration. Biomaterials. 2010, 31, 4286-4295
54. Nomura, S.; Kojima, H.; Ohyabu, Y.; Kuwabara, K.; Miyachi, A.; Uemura, T. Cell culture on nanopillar sheet: study of HeLa cells on nanopillar sheet. Jpn. J. Appl. Phys. 2005, 44, L1186-L1186
55. Teixeiraa, A.I.; McKieb, G.A.; Foleyb, J.D.; Berticsc, P.J.; Paul F. Nealey, P.F.; Murphy, C.J. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials. 2006, 27, 3945-3954
56. Charest, J.L.; Bryant, L.E.; Garcia, A.J.; King, W.P. Hot embossing for micropatterned cell substrates. Biomaterials. 2004, 25, 4767–4775
57. Loesberg, W.A.; Riet. J.te; Delftc, F.C.M.J.M. van; Schon, P.; Figdor, C.G.; Speller, S.; Loon, J.J.W.A. van; Walboomers, X.F.; Jansen, J.A. The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials. 2007, 28, 3944-3951
58. Peng, K.; Hu, J.; Yan, Y.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S.T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater. 2006, 16, 387-394.
59. Hsieh, C.M. Wafer-level Moth-Eye Nanostructures fabrication for anti-reflection in optoelectronic devices. Thesis of master, NTHU, Taiwan, 2007, 53-55
60. Georgescu, H.I.; Mendclow, D.; Evans, C.H. Hig-82: an established cellline from rabbit periarticular soft tissue, which retains the “activatable” phenotype. In vitro cell dev-pl, 1988, 24, 1015-1022
61. Burdick, J.A.; Mauck, R.L. Biomaterials for tissue engineering applications. In Introduction; Springer-Verlag/Wien: New York, 2011; pp 1-5
62. Mattila, P.K.; Lappalainen, P.; Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Bio. 2008, 9, 446–454.
63. Hanein, D.; Matsudaira, P.; DeRosier, D.J. Evidence for a conformational change in actin induced by fimbrin (N375) binding. J. Cell Biol. 1997, 139, 387–396.
64. Prendergast, F.; Mann, K.; Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskålea. Biochem. 1978, 17, 3448–3453.
65. Tsien, R. The green fluorescent protein. Annu Rev Biochem, 1998, 67, 509–544.
66. Doherty, G.J.; McMahon, H.T. Mediation, Modulation and Consequences of Membrane-Cytoskeleton Interactions. Annu Rev Biophys. 2008, 37, 65–95
67. Phillips, G. Green fluorescent protein--a bright idea for the study of bacterial protein localization. FEMS Microbiol Lett. 2001, 204, 9–18
68. Binnig, G.; Quate, C. F.; Gerber, C. Atomic force microscope. Phys Rev Lett, 1986, 56, 930-934
69. Binnig, G.; Rohrer, H. In touch with atoms. Rev. Mod. Phys. 1999, 71, S324
70. Huang, J.H.; Ding, J.D. Nanostructured interfaces with RGD arrays to control cell–matrix interaction. Soft Matter, 2010, 6, 3395–3401
71. Discher, D.E.; Janmey, P.;Wang, Y.L. Tissue Cells Feel and Respond to the Stiffness of Their Substrate. Science, 2005, 310, 1139-1143
72. Khatiwala, C.B.;Peyton,S.R.; Putnam, A.J. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am J Physiol Cell Physiol. 2006, 290 C1640–C1650
73. Khan, S.; Newaz, G. A comprehensive review of surface modification for neural cell adhesion and patterning. J Biomed Mater Rers A. 2010, 93, 1209-1224
74. Carragher, N.O.; Westhoff, M.A.; Riley, D.; Potter, D.A.; Dutt, P.; Elce, J.S.; Greer, P.A.; Frame, M.C. v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol Cell Biol. 2002, 22, 257-69
75. Lee, K.B.; Park, S.J.; Mirkin,C.A.; Smith, J.C.; Mrksich, M. Protein Nanoarrays generated by dip-pen nanolithography. Science. 2002, 22, 1702-1705
76. Berrya, C.C.; Dalbya, M.J.; McCloya, D.; Affrossman, S. The fibroblast response to tubes exhibiting internal nanotopography. Biomaterials. 2005, 26, 4985-4992
77. Kim, D.H.; Kim, P.; Song, I.; Cha, J.M.; Lee, S.H.; Kim, B.; Suh, K.Y. Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures. Langmuir. 2006, 22, 5419-5426
78. Dalby, M.J.; Riehle, M.O.; Sutherland, D.S.; Agheli, H.; Curtis, A.S. Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials. 2004, 25, 5415-5422
79. Kong, H.J.; Hsiong, S.; Mooney, D.J. Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett., 2007, 7, 161–166
80. Karlsson, M.; Pålsgård, E.; Wilshaw, P.R.; Di Silvio, L. Initial in vitro interaction of osteoblasts with nano-porous alumina. Biomaterials. 2003, 24, 3039-3046.
81. Huang, J.; V. Gra¨ter, S.V.; Corbellini,F.; Rinck, S.; Bock, E.; Kemkemer, R.; Kessler, H.; Ding, J,; Spatz, J.P. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009,25, 1111-1116
82. Chen, D.C.; Lai, Y.L.; Lee, S.Y.; Hung, S.L.; Chen, H.L. Osteoblastic response to collagen scaffolds varied in freezing temperature and glutaraldehyde crosslinking. J Biomed Mate Res A. 2007, 80, 399-409.
83. Zheng, Z.; Zhang, L.; Kong, L.; Wang, A.; Gong, Y.; Zhang, X. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability. J Biomed Mater Res A. 2009, 89, 453-65.
84. Mundo, R.D.; Nardulli, M.; Antonella Milella, A.; Favia, P.; Riccardo d’Agostino, R.; Gristina, R. Cell Adhesion on Nanotextured slippery superhydrophobic substrates. Langmuir, 2011, 27, 4914–4921