簡易檢索 / 詳目顯示

研究生: 范嘉展
Fan, Chia-Chan
論文名稱: 濕式製程有機發光二極體製作與色度特性之研究
Investigation of Fabrication and Chromaticity Characteristics of Solution-Processed Organic Light Emitting Diodes
指導教授: 林皓武
Lin, Hao-Wu
口試委員: 吳忠幟
Wu, Chung-Chih
吳志毅
Wu, Chih-I
汪根欉
Wong, Ken-Tsung
陳俐吟
Chen, Li-Yin
林皓武
Lin, Hao-Wu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 199
中文關鍵詞: 有機發光二極體濕式製程色度
外文關鍵詞: Organic Light Emitting Diodes, Solution Process, Chromaticity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究濕式製程有機發光二極體的色度、元件結構與效率表現之關係,透過色彩模擬、元件結構優化以及新穎製程實現高效率單色光與白光有機發光二極體元件。
    首先,在本篇論文序論的部分,先對有機電致發光二極體的發展歷史做回顧並簡述有機發光二極體於顯示器與固態照明的應用,接下來對其發光原理、量測技術、製程方式以及白光有機發光二極體作有系統的介紹。
    論文的第二部分,我們導入頻譜線性疊加的概念,模擬多元白光頻譜並於Commission International de l’Eclairage (CIE)色座標中對黑體輻射曲線作逼近,設計出高color rendering index (CRI)與高色度之白光頻譜。利用上述模擬頻譜調整客體發光材料間的摻雜比例於單一發光層中,以刮刀製程製作雙元、三元與四元單發光層濕式製程白光元件並驗證數值模擬的結果。其中,雙元高色溫白光元件,發光色溫為5700 K,CRI值為59,而四元暖白光元件,放光色溫為2700 K,CRI高達85,並具備高白光色純度(Du’v’ = +0.0009)。此外透過線性疊加模擬結果,優化出PL頻譜波峰為555 nm的Os基團的黃光磷光材料之最佳元件表現,所製作出之三元白光刮刀元件,其CRI可達84,色溫為2845 K。
    論文第三部分,我們摻雜電洞傳輸材料4,4′-Cyclohexylidenebis[N,N-bis- (4-methylphenyl)benzenamine] (TAPC)與電子傳輸材料或雙極性傳導特性材料作為共主體材料,並以最佳條件製作四元共摻雜白光有機發光二極體元件。此外,我們分別透過兩種方式增加元件效率,第一在元件外部添加具微米透鏡之光學膜層以及透明半球之光學構造增加外部出光量,分別使元件之外部量子效率(external quantum efficiency, EQE)提升1.3倍與1.89倍;第二,我們於元件內部優化膜層厚度與調變電洞注入層致使白光元件在沒有外部增益層的情況下,效率達44.6 cd/A、35.6 lm/W、EQE = 21.9%。


    In this thesis, we focus on chromaticity modeling, device optimization and innovative fabrication process of solution-processed organic light emitting diodes (OLEDs).
    First, in the introduction, we briefly review the history and development of organic electroluminescence devices, and the application of OLEDs in displays and solid state lighting. Operating princioples, measurement method, and device fabrication of OLEDs, and in particular, white light emitting devices are also discussed.
    In the second part of the thesis, chromaticity simulation of white OLEDs by superposition of individual illuminators is introduced. Design rules of approaching Planckian locus in Commission International de l’Eclairage (CIE) coordinates diagram are porposed. A series of high color rendering index (CRI) and high chromaticity white OLED spectrum have been calculated. By adjusting the emitters doping concentrations in single emissive layer, binary, ternary, and quaternary dopants blade-coated white OLEDs were fabricated to verify the numerical models. The binary white OLED exhibited high correlated color temperature (CCT) of 5700 K with CRI value of 59, while the quaternary white OLED exhibited a higher CRI value of 85 and a warm white illumiation of CCT = 2700 K. Furthermore, according to the model, the devices with a novel Os(II)-based emitter (emission λmax = 555 nm) were designed and fabricated. The ternary white OLED utilizing this novel Os(II) emitter delivered a high CRI value of 84 at CCT = 2845 K and small deviation to Plancknain locus (Du’v’ = +0.0009).
    In the third part, co-host system for solution processed emissive layer has been investigated. High hole-mobility material 4,4′-Cyclohexylidenebis[N,N-bis(4- methylphenyl)benzenamine] (TAPC) was blended with either electron transporting materals or bi-polar hosts. By tuning the ratio of hosts and optimizing the device strcture, highly efficient solution-processed co-host white OLEDs devices were fabricated. Furthermore, we separately explored two different methods to increase the external quantum efficiency (EQE) of the white OLEDs. Exteriorly, by utilizing micro-lens film and hemisphere structure, the light out-coupling efficiencies were enhanced by 1.3 times and 1.89 times, respetively. Interiorly, by fine-tuning the thickness of the emissive layer and carefully selecting the hole injection materials, a highly efficient solution-processed white OLED with current efficiency (CE) of 44.6 cd/A, power efficacy (PE) of 35.6 lm/W, and EQE up to 22.9 % was obtained without out-coupling enhancement structures.
    In the fourth part, we have analyzed the optoelectronic properties of crosslinkable hole transporting materials. Monochromatic multiple-layer solution-processed OLEDs were fabricated. The green OLED exhibited CE of 56.8 cd/A, PE as high as 54.6 lm/W, and EQE up to 15.9 %.
    In the last part of the thesis, we present the preliminary results of quantum dot light emitting diodes utilizing organic transporting layers and zinc oxide nanoparticles.

    摘要 Ⅰ Abstract ⅢⅡ 目錄 ⅤⅣ 分子式目錄 ⅧⅨ 表目錄 ⅩⅠⅩⅠ 圖目錄 ⅩⅤⅣⅢ Chapter 1 序緒論 1 1-1 前言 1 1-2 有機電致發光元件發展歷史 3 1-3 論文架構 5 Chapter 2有機發光二極體概論 6 2-1 1 OLED工作原理 6 2-2 能量轉移機制 10 2-2.1 Förster energy transfer 10 2-2.2 Dexter energy transfer 11 2-2.3 Phosphorescence energy transfer machanism 11 2-2.4 Carrier trapping 12 2-3 OLED元件效率量測 15 2-3.1 放射學與光度學 15 2-3.2 亮度量測 15 2-3.3 OLED效率量測 16 2-3.4 CIE色座標與色溫 18 2-3.5 演色性 1920 2-3.6 CRI之修正與Du’v’ 21 2-4 4 OLED製程 256 2-4.1真空熱蒸鍍製程 256 2-4.2濕式製程 256 2-4.2.1旋 轉塗佈製程 256 2-4.2.2刮刀塗佈製程 267 2-4.2.3 插槽染料 製程slot-dye coating製程 278 2-4.2.4噴墨塗佈製程 278 2-5 白光OLED概述 289 Chapter 3高演色性白光有機發光二極體 312 3-1 簡介 312 3-2 藍光標準元件 334 3-2.1自動化刮刀製程 334 3-2.2藍光標準元件與優化 334 3-3雙元與三元白光模擬 389 3-3.1雙元白光模擬 389 3-3.1.1雙元白光之模擬 389 3-3.2.2雙元白光元件驗證 3940 3-3.2三元白光模擬 3940 3-3.2.1添加Ir(mppy)3或PO-01-TB之三元白光模擬 401 3-3.2.2添加Ir(mppy)3之三元白光元件 412 3-3.2.2添加PO-01-TB之三元白光元件 412 3-4四元白光模擬 634 3-4.1建立四元白光模擬 634 3-4.2四元白光元件 65 3-4.3結論 667 3-5高演色性三元白光 90 3-5.1 Os-based光譜與FIrpic與Os(btfp)2(pp2b)搭配之模擬頻譜 90 3-5.2黃光材料Os(bpftz)2(dppb)之材料分析 91 3-5.3高演色性三元白光元件 91 3-5.4摻雜深藍光螢光材料之四元白光製作 92 Chapter 4高效率共主體分子白光OLED 112 4-1 簡介 112 4-2文獻回顧 114 4-3共主體材料之FIrpic藍光元件 115 4-3.1 TAPC摻雜電子傳輸材料 115 4-3.2 TAPC摻雜Bipolar host材料 116 4-3.3調變TAPC與26DCzPPy之摻雜濃度比 116 4-4共主體材料之白光元件 126 4-3.1 FIrpic-Os(bptz)2(dppb)雙元共主體材料白光元件 126 4-3.2 FIrpic-Os(btfp)2(dppb)雙元共主體材料白光元件 127 4-5透過光學膜層增益白光OLED外部出光率 137 4-5.1 micro-lens光學散射膜 137 4-5.2透明半球 138 4-6雙元共主體材料白光元件的優化 145 4-6.1透過改變主動層膜厚以優化效率 145 4-6.2 調變PEDOT:PSS材料 146 4-6.2.1 AC-2量測 146 4-6.2.2比較不同導電度電洞注入層對元件表現 146 Chapter 5熱交聯材料之研究 160 5-1 簡介 160 5-2文獻回顧 161 5-2.1 Photoacid crosslinkable materials 161 5-2.2 Thermal polymerized materials 162 5-3 VB-FNPD與WHT216S材料特性分析 163 5-3.1 Crosslinkinged Process 163 5-3.2光學係數 163 5-3.3 SCLC電性量測 1664 5-4元件分析 16870270 Chapter 6 Quantum Dot Light Emitting Diodes 量子點電致發光二極體 17645 6-1 簡介 17645 6-2 文獻回顧 17978 6-32 量子點Quantum dot材料分析與元件 1817980 6-23.1藍光量子點Quantum dot材料分析 1817980 6-23.2綠光量子點Quantum dot材料分析與元件 181 1802 Chapter 7 未來展望 175 184 參考文獻 185   分子式目錄 分子式 3.1 bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) FIrpic 109 分子式 3.2 2,6-bis[(3-carbazol-9-yl)phenyl]pyridine 26DCzPPy 109 分子式 3.3 4,4',4"-tris(N-carbazolyl)-triphenylamine TCTA 109 分子式 3.4 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene TmPyPB 109 分子式 3.5 tris(2-(4-tolyl)phenylpyridine)iridium(III) Ir(mppy)3 110 分子式 3.6 bis(4-phenylthieno[3,2-c]pyridinato-N,C2) Iridium(III) PO-01-TB 110 分子式 3.7 bis(5-(benzothiazol-2-yl)-3-trifluoromethylpyrazole) 1,2-bis(phospholano)benzene Osmium(II) Os(btfp)2(pp2b) 110 分子式 3.8 Os(bpftz)2(dppb) 110 分子式 3.9 4,4′-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] TAPC 111 分子式 3.10 Ter(9,9-diarylfluorene) TDF 111 分子式 4.1 3-(diphenylphosphoryl) -9-(4(diphenylphosphoryl)phenyl)-9-carbazole PPO21 158 分子式 4.2 Bathophenanthroline Bphen 158 分子式 4.3 1,3,5-tris(phenyl-2-benzimidazolyl)-benzene TPBi 158 分子式 4.4 3,3',5,5'-tetra[(M-pyridyl)-phen-3-yl]biphenyl BP4mPy 158 分子式 4.5 6‐(9H‐carbazol‐9‐yl)‐9‐(2‐ethylhexyl)‐9H‐3,9'‐bicarbazole TCz1 159 分子式 4.6 4,4'-bis(carbazol-9-yl) triphenylamine CBP 159 分子式 4.7 1,3-Bis(N-carbazolyl)benzene mCP 159 分子式 4.8 Os(bptz)2(dppb) 159 分子式 4.9 Os(btfp)2(dppb) 159 分子式 5.1 2,7-disubstituted fluorene-based triaryldiamine 17435 分子式 5.2 WHT-216S 17354 分子式 5.3 N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-1,1′-biphenyl)-4,4′-diamin NPB 17354   表目錄 表 3.1 FIrpic 元件改變主動層厚度之效率結果 387 表 3.2 Os(btfp)2(pp2b) (R)與FIrpic (B)雙元白光OLED元件EL頻譜光色結果雙元白光OLED元件光色結果 489 表 3.3 Os(btfp)2(pp2b) (R)與FIrpic (B)雙元白光OLED元件效率結果雙元白光OLED元件效率結果 489 表 3.4 Os(btfp)2(pp2b) (R)、Ir(mppy)3 (G)、FIrpic (B)三元白光OLED元件光色結果FIrpic、Ir(mppy)3、Os(btfp)2(pp2b)三元白光OLED元件光色結果 545 表 3.5 Os(btfp)2(pp2b)Os(btfp)2(pp2b) (R)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、Ir(mppy)3、Os(btfp)2(pp2b)三元白光OLED元件元件效率結果 545 表 3.6 Os(btfp)2(pp2b) (R)、Ir(mppy)3 (G)、FIrpic (B)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)比例為1:1:6、2:1:12、3:1:16、4:1:20三元白光OLED元件光色結果FIrpic、PO-01-TB、Os(btfp)2(pp2b)比例為1:1:6、2:1:12、3:1:16、4:1:20三元白光OLED元件光色結果 589 表 3.7 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、FIrpic (B)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)比例為1:1:6、2:1:12、3:1:16、4:1:20三元白光OLED元件效率 589 表 3.8 Os(btfp)2(pp2b) Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B) FIrpic、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:2:28、5:2:35、5:2:42、5:2:56三元白光OLED元件光色結果 623 表 3.9 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、FIrpic (B)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)比例為:2:28、5:2:35、5:2:42、5:2:56三元白光OLED元件效率結果 623 表3.10 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)摻雜濃度比為5:1:1:42、5:1.5:1.5:42、5:2:1.5:42、5:2:4:42 FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:1:1:42、 5:1.5:1.5:42、5:2:1.5:42、5:2:4:42白光OLED元件之光色整理 734 表3.11 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)摻雜濃度比為5:1:1:42、5:1.5:1.5:42、5:2:1.5:42、5:2:4:42FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:1:1:42、5:1.5:1.5:42、5:2:1.5:42、5:2:4:42白光OLED元件之效率整理 734 表 3.12 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:2.5:1:44、8:3:1:46、7:2:1:44、8:3:1:48白光OLED元件之光色整理 778 表 3.13 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:2.5:1:44、8:3:1:46、7:2:1:44、8:3:1:48白光OLED元件之效率整理 778 表 3.14 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:2.5:1:44、8:3:1:46、7:2:1:44、8:3:1:48白光OLED元件之光色整理 81 表 3.15 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:2.5:1:44、8:3:1:46、7:2:1:44、8:3:1:48白光OLED元件之效率整理 812 表 3.16 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:3:1:44、8:3.2:1:44、8:3.2:1:48、8:3.3:1:52白光OLED元件之光色整理 85 表 3.17 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:3:1:44、8:3.2:1:44、8:3.2:1:48、8:3.3:1:52白光OLED元件之效率整理 85 表 3.18 FIrpic (B)、Ir(mppy)3 (G)、PO-01-TB (Y)、Os(btfp)2(pp2b) (R)摻雜濃度比為R:B = 1:11、R:G:B = 3:1:16、R:Y:B = 5:2:42、R:Y:G:B = 8:3:1:44白光OLED元件之光色整理FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為R:B = 1:11、R:G:B = 3:1:16、R:Y:B = 5:2:42、R:Y:G:B = 8:3:1:44白光OLED元件之光色整理 89 表 3.19 FIrpic (B)、Ir(mppy)3 (G)、PO-01-TB (Y)、Os(btfp)2(pp2b) (R)摻雜濃度比為R:B = 1:11、R:G:B = 3:1:16、R:Y:B = 5:2:42、R:Y:G:B = 8:3:1:44白光OLED元件之效率整理FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為R:B = 1:11、R:G:B = 3:1:16、R:Y:B = 5:2:42、R:Y:G:B = 8:3:1:44白光OLED元件之效率整理 89 表 3.20 Os(bpftz)2(dppb)之PL、Q.Y.、PL-lifetime、HOMO/LUMO能階 99 表 3.21 Os(btfp)2(pp2b)、 Os(bpftz)2(dppb)與FIrpic摻雜濃度比為1:1:3、1:1:4、1:1:6白光OLED元件之光色整理 103 表 3.22 FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:3:1:44、8:3.2:1:44、8:3.2:1:48、8:3.3:1:52白光OLED元件之效率整理 103 表 3.23 Os(btfp)2(pp2b) (R)、Os(bpftz)2(dppb) (Y)、FIrpic (B)與TDF (deep B)Os(btfp)2(pp2b)、 Os(bpftz)2(dppb):FIrpic:TDF摻雜濃度比為1:2:6:6、1:2:6:12、1:2:6:18白光OLED元件之光色整理 108 表 3.24 Os(btfp)2(pp2b)、 Os(bpftz)2(dppb)與FIrpic摻雜濃度比為1:1:3、1:1:4、1:1:6白光OLED元件之效率整理 108 表 4.1 利用TAPC摻雜電子傳輸材料PPO21、Bphen、TPBi、BP4mPy之FIrpic藍光元件元件效率整理 120 表 4.2 利用TAPC摻雜電子傳輸材料TCz1、CBP、mCP、26DCzPPyy之FIrpic藍光元件元件效率整理 123 表 4.3 調變TAPC與26DCzPPy摻雜比例之FIrpic藍光元件效率結果整理。 125 表 4.4 Os(bptz)2(dppb)之PL放光、Q.Y.、HOMO/LUOM與光物理參數之整理 128 表 4.5 FIrpic摻雜Os(bptz)2(dppb)比例為4:1、6:1、8:1、10:1之白光OLED元件於1000 cd/m2下CIE、CRI、CCT結果整理 132 表 4.6 FIrpic摻雜Os(bptz)2(dppb)比例為4:1、6:1、8:1、10:1之白光OLED元件效率結果整理 132 表 4.7 Os(btfp)2(dppb)之PL放光、Q.Y.、HOMO/LUOM與光物理參數之整理 133 表 4.8 FIrpic摻雜Os(btfp)2(dppb)比例為4:1、6:1、8:1、10:1之白光OLED元件於1000 cd/m2下CIE、CRI、CCT結果整理 136 表 4.9 FIrpic摻雜Os(btfp)2(dppb)比例為4:1、6:1、8:1、10:1之白光OLED之元件元件效率結果整理 136 表4.10 中強光電股份有限公司所提供的微結構半球光學膜於之半球直徑與排列密度 141 表 4.11 添加光學膜之FIrpic – Os(btfp)2(dppb)白光元件之發光電流效率、發光功率效率、外部量子效率與增益之整理 143 表 4.12 FIrpic - Os(btfp)2(dppb)比例為10:1之白光OLED元件改變主動層厚度為30.5 nm、29.6 nm、22.8 n與21.2 nm於1000 cd/m2下CIE、CRI、CCT整理 152 表 4.13 FIrpic - Os(btfp)2(dppb)比例為10:1之白光OLED元件改變主動層厚度為30.5 nm、29.6 nm、22.8 n與21.2 nm之元件效率結果整理 152 表 4.14 FIrpic - Os(btfp)2(dppb)((10:1))雙元白光,改變電洞注入層((AI4083、CH8000))以及電洞傳輸層((犧牲層))之白光OLED元件於1000 cd/m2下CIE、CRI、CCT整理 157 表 4.15 FIrpic - Os(btfp)2(dppb)((10:1))雙元白光,改變電洞注入層((AI4083、CH8000))以及電洞傳輸層((犧牲層))之白光OLED元件效率整理 157 表 5.1 由各SCLC元件之 fitting曲線所得的零電場下電洞載子遷移率以及β值 1687 表 5.2 各Ir((mppy))3與PO-01-TB元件之 ((a))J-V-L曲線、((b))發光電流效率、((c))發光功率效率與((d))外部量子效率整理 17324 表 6.1 藍光量子點溶液態與薄膜態的吸收與量子產率 1808379 表 6.2 綠光量子點薄膜態的吸收與量子產率 18412   圖目錄 圖1.1 2008年固態照明效率與未來預測 28 圖 2.1 OLED元件電激發光過程 8 圖 2.2 載子經再結合後之能量分配及能階示意圖 9 圖 2.3 輻射能量轉移示意圖 13 圖 2.4 Förster非輻射能量轉移((庫倫作用力機制)) 13 圖 2.5 Dexter非輻射能量轉移((電子交換機制)) 13 圖 2.6 磷光OLED元件中主客發光體能量轉移機制 14 圖 2.7 人眼對可見光之頻率響應頻譜 234 圖2.8 某一可視角度上單位面積所偵測到OLED光通量的面積 24 圖 2.98 CIEx, y1931色座標圖 235 圖 2.910 人眼對三原色之顏色響應((color matching functions: 、 、 )) 245 圖 2.110 量測CRI值所用8個低飽和度色塊((R1到R8)) 245 圖 2.112 常見的白光OLED結構 301 圖 3.1 自動化刮刀塗佈機台 356 圖 3.2 FIrpic刮刀製程元件結構 356 圖3.3 (a)FIrpic元件之頻譜(b)電流密度對操作電壓作圖(c)亮度對操作電壓作圖(d)元件發光電流效率(e)發光功率效率(f)外部電子效率 367 圖 3.4 FIrpic、Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)單色光元件EL頻譜 434 圖 3.5 FIrpic、Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)單色光元件EL頻譜所對應之CIE值 434 圖 3.6 FIrpic、Os(btfp)2(pp2b) 經EL頻譜線性疊加所得白光模擬頻譜FIrpic、Os(btfp)2(pp2b)之白光模擬頻譜 445 圖 3.7 FIrpic(B)、Os(btfp)2(pp2b)(R)白光刮刀製程元件結構FIrpic與Os(btfp)2(pp2b)白光刮刀製程製程元件結構 445 圖 3.8 調變Os(btfp)2(pp2b) (R)與FIrpic (B)與摻雜濃度比為1:30、1:20、1:16、1:12以及1:10之元件EL頻譜調變FIrpic (B)與Os(btfp)2(pp2b) (R)摻雜濃度比為30:1、20:1、16:1、12:1以及10:1之元件頻譜 456 圖 3.9 調變Os(btfp)2(pp2b) (R)與FIrpic (B)與摻雜濃度比為1:30、1:20、1:16、1:12以及1:10之元件CIE色座標值調變FIrpic (B)與Os(btfp)2(pp2b) (R)FIrpic與Os(btfp)2(pp2b)摻雜濃度比為30:1、20:1、16:1、12:1以及10:1之元件CIE色座標值 456 圖 3.10 調變Os(btfp)2(pp2b) (R)與FIrpic (B) 與摻雜濃度比為1:30、1:20、1:16、1:12以及1:10之(a)V-L圖(b)發光電流效率(c)發光功率效率(d)外部量子效率調變FIrpic (B)與Os(btfp)2(pp2b) (R)FIrpic與Os(btfp)2(pp2b)摻雜濃度比為30:1、20:1、16:1、12:1以及10:1之(a)V-L圖(b)發光電流效率(c)發光功率效率(d)外部量子效率。 467 圖 3.11 Os(btfp)2(pp2b) (R)與FIrpic (B)雙元白光頻譜模擬與元件EL頻譜之比較雙元白光頻譜模擬與元件之比較 478 圖 3.12 三元白光頻譜模擬之概念圖,先將FIrpic(B)與Os(btfp)2(pp2b)(R)之EL頻譜依不同比例作線性疊加,再依強度逐漸疊加Ir(mppy)3(G)或PO-01-TB(Y)頻譜於半完成頻譜上,於CIE色座標上即先對FIrpic (0.17, 0.34)與Os(btfp)2(pp2b) (0.63,0.37)做內插,再將內插點對Ir(mppy)3 (0.25, 0.63)或PO-01-TB (0.49,0.50)做射線,其設線與PlancknianPlanckian locus交點即為模擬頻譜的白光頻譜與CIE座標三元白光頻譜模擬之概念圖 4950 圖 3.13 RGB三元白光頻譜模擬結果:將圖3 .12 CIE色座標上指向(0.25, 0.63)的射線與PlancknianPlanckian locus的交點,其對應的頻譜計算其CRI值並顯示RGB三元依照PlancknianPlanckian locus製作的白光元件於各色溫下所能達到的CRI值RGB三元白光頻譜模擬結果 501 圖 3.14 RYB三元白光頻譜模擬結果:將圖3 .12 CIE色座標上指向(0.49, 0.50)的射線與PlancknianPlanckian locus的交點,其對應的頻譜計算其CRI值並顯示RYB三元依照PlancknianPlanckian locus製作的白光元件於各色溫下所能達到的CRI值RYB三元白光頻譜模擬結果 501 圖 3.15 FIrpic、Ir(mppy)32、Os(btfp)2(pp2b)之EL頻譜線性疊加後於3000 K之結果 512 圖 3.16 調變Os(btfp)2(pp2b) (R)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、Ir(mppy)2、Os(btfp)2(pp2b)摻雜濃度比為3:1:3、3:1:4、3:1:8、3:1:16於不同操作電壓下之元件頻譜 512 圖 3.17 調變Os(btfp)2(pp2b) (R)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、Ir(mppy)2 Os(btfp)2(pp2b)摻雜濃度比為3:1:3、3:1:4、3:1:8、3:1:16於1000 cd/m2下之CIE色座標 523 圖 3.18 調變FIrpic、Ir(mppy)2、Os(btfp)2(pp2b) Os(btfp)2(pp2b) (R)、Ir(mppy)3 (G)、FIrpic (B)摻雜濃度比為3:1:16於1000 cd/m2下之頻譜與同色溫下模擬頻譜比較 523 圖 3.19 調變Os(btfp)2(pp2b) (R)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、Ir(mppy)2、Os(btfp)2(pp2b)摻雜濃度比為3:1:3、3:1:4、3:1:8、3:1:16之元件結果:(a)V-L圖(b)發光電流效率(c)發光功率效率(d)外部量子效率 534 圖 3.20 FIrpic、PO-01-TB、Os(btfp)2(pp2b) Os(bpftz)2(dppb)之EL頻譜線性疊加後於3000 K之結果 556 圖 3.21 調變Os(btfp)2(pp2b)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為1:1:6、2:1:12、3:1:16、4:1:20於不同操作電壓下之元件頻譜 556 圖 3.22 調變Os(btfp)2(pp2b) Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為1:1:6、2:1:12、3:1:16、4:1:20於1000 cd/m2下之CIE色座標 567 圖 3.23 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、FIrpic (B)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為1:1:6、2:1:12、3:1:16、4:1:20之元件結果:(a)V-L圖(b)發光電流效率(c)發光功率效率(d)外部量子效率 578 圖 3.24 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、FIrpic (B)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:2:28、5:2:35、5:2:42、5:2:56於不同操作電壓下之元件頻譜 5960 圖 3.25 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、FIrpic (B)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:2:28、5:2:35、5:2:42、5:2:56於1000 cd/m2下之CIE色座標 5961 圖 3.26 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、FIrpic (B)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:2:42於1000 cd/m2下之頻譜與同3000 K 三元模擬頻譜比較 601 圖 3.27 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、FIrpic (B)Os(bpftz)2(dppb) (R)、PO-01-TB (Y)、FIrpic (B)FIrpic、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:2:28、5:2:35、5:2:42、5:2:56之元件效率結果:(a)V-L圖(b)發光電流效率(c)發光功率效率(d)外部量子效率 612 圖 3.28 FIrpic (B)、Ir(mppy)3 (G)、PO-01-TB (Y)、Os(btfp)2(pp2b) (R)模擬概念示意圖,將FIrpic與Os(btfp)2(pp2b)作頻譜疊加,於CIE色座標即對座標(0.17, 0.34)與(0.67, 0.37)作內插,於內插點上作往Ir(mppy)3 (0.25, 0.63)與PO-01-TB (0.49, 0.50)之向量,此二向量與PlancknianPlanckian locus相交,我們即可經模擬頻譜換算得知此兩交點區間內PlancknianPlanckian locus的CRI值。FIrpic、Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)模擬概念示意圖 678 圖 3.29 以Os(btfp)2(pp2b)、FIrpic為(a) 1:1.5、(b) 1:1.3、(c) 1:1、(d) 1.5:1、(e) 2:1、(f) 3:1為半完成點與Ir(mppy)3 (0.25, 0.63)與PO-01-TB (0.49, 0.50)之向量所夾PlancknianPlanckian locus區間內的CRI值 以Os(btfp)2(pp2b)、FIrpic為(a)1:1.5、(b)1:1.3、(c)1:1、(d)1.5:1(e)2:1(f)3:1 6870 圖 3.30 Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)頻譜疊加結果為CRI = 85之白光頻譜 701 圖 3.31 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:1:1:42、5:1.5:1.5:42、5:2:1.5:42、5:2:4:42於不同操作電壓下之元件頻譜 702 圖 3.32 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:1:1:42、5:1.5:1.5:42、5:2:1.5:42、5:2:4:42於1000 cd/m2之CIE色座標 712 圖 3.33 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:1:1:42、5:1.5:1.5:42、5:2:1.5:42、5:2:4:42於1000 cd/m2之元件效率 72 圖 3.34 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為6:2:1:42、8:2:1:42、10:2:1:42、12:2:1:42於不同操作電壓下之元件頻譜 745 圖 3.35 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為6:2:1:42、8:2:1:42、10:2:1:42、12:2:1:42於1000 cd/m2之CIE色座標 745 圖 3.36 FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2bOs(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B))摻雜濃度比為6:2:1:42與8:2:1:42之頻譜與模擬結果重疊比較 756 圖 3.37 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為5:1:1:42、5:1.5:1.5:42、5:2:1.5:42、5:2:4:42於1000 cd/m2之元件效率 76 圖 3.38 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:2.5:1:44、8:3:1:46、7:2:1:44、8:3:1:48於不同操作電壓下之元件頻譜 789 圖 3.39 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:2.5:1:44、8:3:1:46、7:2:1:44、8:3:1:48於1000 cd/m2之CIE色座標 789 圖 3.40 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:2.5:1:44、8:3:1:46、7:2:1:44、8:3:1:48於1000 cd/m2之與模擬頻譜比較 7980 圖 3.41 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:2.5:1:44、8:3:1:46、7:2:1:44、8:3:1:48之元件效率 80 圖 3.42 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:3:1:44、8:3.2:1:44、8:3.2:1:48、8:3.3:1:52於不同操作電壓下之元件頻譜 82 圖 3.43 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:3:1:44、8:3.2:1:44、8:3.2:1:48、8:3.3:1:52於1000 cd/m2之CIE色座標 823 圖 3.44 調變Os(btfp)2(pp2b) (R)、PO-01-TB (Y)、Ir(mppy)3 (G)、FIrpic (B)摻雜濃度比為8:3:1:44與模擬光譜圖3.30之比較。調變FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:3:1:44與模擬光譜圖3.30之比較 83 圖 3.45 調變FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)摻雜濃度比為8:3:1:44、8:3.2:1:44、8:3.2:1:48、8:3.3:1:52之元件效率 84 圖 3.46 調變FIrpic、 Ir(mppy)3、PO-01-TB、Os(btfp)2(pp2b)之最接近PlancknianPlanckian locus之雙元、三元、四元白光之結果:R:B = 1:11、R:G:B = 3:1:16、R:Y:B = 5:2:42、R:Y:G:B = 8:3:1:44之(a)CIE1976(u’, v’)色座標、(b)J-V-L曲線、(c)發光電流、功率效率、(d)外部量子效率 86 圖 3.47 以四元白光R:Y:G:B = 8:3:1:44之高演色性圖形(CRI = 85) 88 圖 3.48 比較高低色溫與CRI照射物體(雙元與四元)所呈現之演色性比較圖 88 圖 3.49 以Os(btfp)2(pp2b)為模擬頻譜峰值由波長480 nm以10 nm為一單位紅移至600 nm止並與高色溫的FIrpic與Os(btfp)2(pp2b)白光頻譜做疊加示意圖 94 圖 3.50 以Os(btfp)2(pp2b)為模擬頻譜峰值由波長480 nm以10 nm為一單位紅移至600 nm止並與低色溫的FIrpic與Os(btfp)2(pp2b)白光頻譜做疊加示意圖以Os(btfp)2(pp2b)為模擬頻譜峰值由波長480 nm以10 nm為一單位紅移至600 nm止並與低色溫的FIrpic與Os(btfp)2(pp2b)白光頻譜做疊加示意圖 94 圖 3.51 高色溫FIrpic與Os(btfp)2(pp2b)模擬白光疊加第三色光(圖 3.49)之頻譜結果。高色溫三元白光(圖3.44)之模擬結果 95 圖 3.52 低色溫FIrpic與Os(btfp)2(pp2b)模擬白光疊加第三色光(圖 3.49)之頻譜結果。低色溫三元白光(圖3.44)之模擬結果 95 圖 3.53 將圖3.51、3.52高色溫與低色溫FIrpic與Os(btfp)2(pp2b)疊加第三單色光模擬頻譜所得頻譜結果經轉換所得CIE色座標圖,黑色三角形為第三單色光之CIE色座標,藍色倒三角形為高色溫白光頻譜疊加第三單色光所得CIE座標,紫色菱形為低色溫白光頻譜疊加第三單色光所得CIE座標將圖3.51、3.52之模擬頻譜之CIE色座標圖 96 圖 3.54 高色溫與低色溫FIrpic與Os(btfp)2(pp2b)疊加第三單色光模擬頻譜所得頻譜結果經轉換所得CIE色座曲線與Planckian locus之交點,(高色溫交於一點,低色溫交於兩點),經換算所得白光頻譜模擬頻譜之CIE色座標落於Plancknian locus上的頻譜 97 圖 3.55 白光頻譜之色溫對虛擬頻譜之波峰波長作圖 98 圖 3.56 白光頻譜之CRI對虛擬頻譜之波峰波長作圖 98 圖 3.57 Os(bpftz)2(dppb)之吸收頻譜、薄膜狀態下的PL和單色光元件之EL頻譜 99 圖 3.58 Os(btfp)2(pp2b)(R)、Os(bpftz)2(dppb)(Y)與FIrpic(B)三元白光元件結構Os(btfp)2(pp2b)、 Os(bpftz)2(dppb)與FIrpic三元白光元件結構圖 100 圖 3.59 調變Os(btfp)2(pp2b) (R)、 Os(bpftz)2(dppb) (Y)與FIrpic (B)摻雜濃度比為1:1:3、1:1:4、1:1:6於不同操作電壓下之元件頻譜 100 圖 3.60 調變Os(btfp)2(pp2b) (R)、 Os(bpftz)2(dppb) (Y)與FIrpic (B)Os(btfp)2(pp2b)、 Os(bpftz)2(dppb)與FIrpic摻雜濃度比為1:1:3、1:1:4、1:1:6於1000 cd/m2之CIE色座標 101 圖 3.61 調變Os(btfp)2(pp2b) (R)、Os(bpftz)2(dppb) (Y)與FIrpic (B)摻雜濃度比為1:1:3、於1000 cd/m2之頻譜與模擬頻譜之比較調變Os(btfp)2(pp2b) (R)、 Os(bpftz)2(dppb) (Y)與FIrpic (B)Os(btfp)2(pp2b)、 Os(bpftz)2(dppb)與FIrpic摻雜濃度比為1:1:3、於1000 cd/m2之頻譜與模擬頻譜之比 101 圖 3.62 調變Os(btfp)2(pp2b) (R)、 Os(bpftz)2(dppb) (Y)與FIrpic (B)Os(btfp)2(pp2b)、 Os(bpftz)2(dppb)與FIrpic摻雜濃度比為1:1:3、1:1:4、1:1:6於1000 cd/m2之J-V-L曲線以及效率圖 102 圖 3.63 利用TDF(deep B)與Os(btfp)2(pp2b) (R)、 Os(bpftz)2(dppb) (Y)、FIrpic (B)做頻譜疊加之模擬頻譜並計算其CIE色座標與CRI值利用TDF與Os(btfp)2(pp2b)、 Os(bpftz)2(dppb)、FIrpic做頻譜疊加之模擬頻譜並計算其CIE色座標與CRI值 104 圖 3.64 TDF(deep B)與Os(btfp)2(pp2b) (R)、 Os(bpftz)2(dppb) (Y)、FIrpic (B)四元白光元件有機層之能階圖Os(btfp)2(pp2b)、 Os(bpftz)2(dppb)、FIrpic、TDF四元白光元件有機層之能階圖 105 圖 3.65 (a)TDF之單色光元件頻譜,調變Os(btfp)2(pp2b) (R)、Os(bpftz)2(dppb) (Y)、FIrpic (B)與TDF (deep B)Os(btfp)2(pp2b)、Os(bpftz)2(dppb) 、FIrpic與TDF摻雜濃度比為(b)1:2:6:6、(c)1:2:6:12、(d)1:2:6:18於不同操作電壓下之元件頻譜 105 圖 3.66 (a)TDF之單色光元件頻譜,調變Os(btfp)2(pp2b) (R)、Os(bpftz)2(dppb) (Y)、FIrpic (B)與TDF (deep B)Os(btfp)2(pp2b)、Os(bpftz)2(dppb) 、FIrpic與TDF摻雜濃度比為(b)1:2:6:6、(c)1:2:6:12、(d)1:2:6:18於不同操作電壓下之CIE色座標 106 圖 3.67 TDF之單色光元件與,調變Os(btfp)2(pp2b) (R)、Os(bpftz)2(dppb) (Y)、FIrpic (B)與TDF (deep B)Os(btfp)2(pp2b)、Os(bpftz)2(dppb) 、FIrpic與TDF摻雜濃度比為1:2:6:6、1:2:6:12、1:2:6:18之J-V-L曲線以及效率圖 1076 圖 4.1 以TAPC為犧牲層,主動層為TAPC與電子傳輸材料共摻雜之FIrpic之元件結構件 118 圖 4.2 元件結構中各有機材料之HOMO、LUMO能階圖 118 圖 4.3 主動層TAPC摻雜不同電子傳輸材料PPO21、Bphen、TPBi、BP4mPy之FIrpic藍光元件之(a) EL頻譜、(b、c) J-V-L特性以及(d) 發光效率、(e) 功率效率以及(f) 外部電子效率改變主動層TAPC摻雜之電子傳輸材料PPO21、Bphen、TPBi、BP4mPy之FIrpic藍光元件之((a))頻譜、((b、c))J-V-L特性以及((d))發光效率、((e))功率效率以及((f))外部電子效率 119 圖 4.4 以TAPC摻雜不同之bipolar主體材料之藍光元件元件結構 121 圖 4.5 元件所使用材料,TAPC與不同bipolar主體材料之能階圖 121 圖 4.6 主動層為TAPC摻雜不同bipolar主體材料TCz1、CBP、mCP、26DCzPPy之FIrpic藍光元件之(a)頻譜、(b、c)J-V-L特性以及(d)發光效率、(e)功率效率以及(f)外部電子效率。改變主動層TAPC摻雜bipolar主體材料TCz1、CBP、mCP、26DCzPPy之FIrpic藍光元件之((a))頻譜、((b、c))J-V-L特性以及((d))發光效率、((e))功率效率以及((f))外部電子效率 122 圖 4.7 調變主動層TAPC與26DCzPPy摻雜重量比例((TAPC:26DCzPPy = 1:0、4:1、2:1、1:1、1:2、1:4、1:7與0:1))之FIrpic藍光元件結果,((a))頻譜、((b、c))J-V-L特性以及((d))發光效率、((e))發光功率效率以及((f))外部電子效率 124 圖 4.8 Os(bptz)2(dppb)之吸收光譜以及PL放光頻譜 128 圖 4.9 FIrpic – Os(bptz)2(dppb)雙元白光元件結構 129 圖 4.10 FIrpic摻雜Os(bptz)2(dppb)比例為4:1、6:1、8:1、10:1之白光OLED元件於不同操作電壓下的EL頻譜 129 圖 4.11 FIrpic(B)摻雜Os(bptz)2(dppb) (O)比例為4:1、6:1、8:1、10:1之白光OLED元件於1000 cd/m2下的CIE色座標FIrpic摻雜Os(bptz)2(dppb)比例為4:1、6:1、8:1、10:1之白光OLED元件於1000 cd/m2下的CIE色座標 130 圖 4.12 FIrpic(B)摻雜Os(bptz)2(dppb) (O)比例為4:1、6:1、8:1、10:1白光元件之(a)J-V-L曲線、(b)發光電流效率、(c)發光功率效率與(d)外部量子效率曲線FIrpic摻雜Os(bptz)2(dppb)比例為4:1、6:1、8:1、10:1白光元件之(a)J-V-L曲線、(b)發光電流效率、(c)發光功率效率與(d)外部量子效率曲線 1310 圖 4.13 Os(btfp)2(dppb)之吸收光譜以及PL放光頻譜 133 圖 4.14 FIrpic(B)摻雜Os(btfp)2(dppb) (O)比例為4:1、6:1、8:1、10:1之白光OLED元件於不同操作電壓下的EL頻譜 134 圖 4.15 FIrpic摻雜Os(btfp)2(dppb)比例為4:1、6:1、8:1、10:1之白光OLED元件於1000 cd/m2下的CIE座標 134 圖 4.16 FIrpic摻雜Os(btfp)2(dppb)比例為4:1、6:1、8:1、10:1白光元件之((a))J-V-L曲線、((b))發光電流效率、((c))發光功率效率與((d))外部量子效率曲線 135 圖 4.17 微米結構半球光學膜於顯微鏡下所拍攝之照片中強光電股份有限公司所提供的微結構半球光學膜於顯微鏡下所拍攝之照片 139 圖 4.18 確認使用((a))Ocean Optics4000((量測於手套箱))與((b))CCD((量測於積分球內)) FIrpic – OS(btfp)2(dppb)((10:1))白光頻譜之比較 141 圖 4.19 添加光學膜之FIrpic – Os(btfp)2(dppb)白光元件之((a))電流密度對電壓曲線((b))發光電流效率((c))發光功率效率((d))外部量子效率之比較 142 圖 4.20 FIrpic-Os(btfp)2(dppb)白光元件透過手套箱內Large area Si photodetector、利用積分球量測與添加光萃取透明半球並利用積分球量測之(a)電流密度對電壓曲線(b)發光電流效率(c)發光功率效率(d)外部量子效率之比較添加光萃取透明半球之FIrpic – Os(btfp)2(dppb)白光元件之(a)電流密度對電壓曲線(b)發光電流效率(c)發光功率效率(d)外部量子效率之比較 144 圖 4.21 FIrpic – Os(btfp)2(dppb)雙元白光,改變主動層厚度之元件結構 149 圖 4.22 FIrpic – Os(btfp)2(dppb)摻雜比例為10:1改變主動層厚度為30.5 nm、29.6 nm、22.8 n與21.2 nm之白光OLED元件於不同操作電壓下的EL頻譜 149 圖 4.23 FIrpic - Os(btfp)2(dppb)摻雜比例為10:1改變主動層厚度為30.5 nm、29.6 nm、22.8 n與21.2 nm之白光OLED元件於1000 cd/m2下的EL頻譜 150 圖 4.24 FIrpic - Os((btfp))2((dppb))摻雜比例為10:1改變主動層厚度為30.5 nm、29.6 nm、22.8 n與21.2 nm之白光OLED元件((a))J-V-L曲線、((b))發光電流效率、((c))發光功率效率與((d))外部量子效率曲線 1510 圖 4.25 利用光電子頻譜((AC2量測法))量測PEDOT:PSS:AI 4083以及CH 8000薄膜的HOMO值 153 圖 4.26 FIrpic - Os(btfp)2(dppb)雙元白光,改變電洞注入層((AI4083、CH8000))以及電洞傳輸層((犧牲層))之元件結構 154 圖 4.27 FIrpic - Os(btfp)2(dppb)雙元白光,改變電洞注入層((AI4083、CH8000))以及電洞傳輸層((犧牲層))之白光OLED元件於不同操作電壓下的EL頻譜 154 圖 4.28 FIrpic-Os(btfp)2(dppb)雙元白光,改變電洞注入層(AI4083、CH8000)以及電洞傳輸層(犧牲層)之白光OLED元件於1000 cd/m2下CIE圖FIrpic-Os(btfp)2(dppb) (10:1)雙元白光,改變電洞注入層(AI4083、CH8000)以及電洞傳輸層(犧牲層)之白光OLED元件於(a)J-V-L曲線、(b)發光電流效率、(c)發光功率效率與(d)外部量子效率曲線FIrpic - Os(btfp)2(dppb)((10:1))雙元白光,改變電洞注入層((AI4083、CH8000))以及電洞傳輸層((犧牲層))之白光OLED元件於1000 cd/m2下CIE圖 155 圖 4.29 FIrpic - Os(btfp)2(dppb)((10:1))雙元白光,改變電洞注入層((AI4083、CH8000))以及電洞傳輸層((犧牲層))之白光OLED元件於((a))J-V-L曲線、((b))發光電流效率、((c))發光功率效率與((d))外部量子效率曲線 1565 圖 5.1 以橢圓儀量測光學參數並fitting所得VB-FNPD薄膜在crosslink反應前後之(a) n、(b) k值以橢圓儀量測光學參數並fitting所得VB-FNPD薄膜在crosslink反應前後之n、k值 165 圖 5.2 以橢圓儀量測光學參數並fitting所得WHT-216S薄膜在crosslink反應前後之(a) n、(b) k值n、k值 165 圖 5.3 比較NPB以及crosslink反應後VB-FNPD、WHT-216S薄膜之(a) n、(b) k值n、k值 166 167 圖 5.4 NPB、VB-FNPD以及WHT-216S之hole only device所得的電流密度對操作電壓曲線 166 168 圖5.5 fitting NPB之SCLC元件所得的fitting曲線 167 圖5.6 fitting VB-FNPD之SCLC元件所得的fitting曲線 167 圖5.7 fitting WHT-216S之SCLC元件所得的fitting曲線 168 圖 5.58 利用Poole-Frenkel equation作SCLC元件之電洞載子遷移率對電場曲線 16799 圖 5.69 Ir(mppy)3與PO-01-TB之元件結構 1697171 圖 5.710 Ir(mppy))3與PO-01-TB元件之EL頻譜 1697171 圖 5.811 各Ir(mppy)3與PO-01-TB元件之 ((a))J-V-L曲線、((b))發光電流效率、((c))發光功率效率與((d))外部量子效率曲線 17032 圖 6.1 量子點的半導體特性示意圖 17867 圖 6.2 混合層變厚度之低TPTPA濃度之塊材型異質接面元件外部量子效率圖 17867 圖 6.3 藍光量子點溶液態與薄膜態的PL頻譜 1817980 圖 6.4 綠光量子點薄膜態的PL頻譜 18312 圖 6.5 綠光QLED元件結構 18312 圖 6.6 綠光QLED元件之((a))EL光譜、((b))電流密對電壓曲線、((c))亮度對電壓曲線((d))發光電流效率、((e))發光功率效率、((f))外部量子效率 18423

    1. http://oled.lcdtvbuyingguide.com/oled-tv-articles/sony-ces-2011.html. CES 2011, (LCDTVBuyingGuideTM).
    2. (a) http://www.whathifi.com/news/ifa-2012-samsung-55in-oled-tv-marks-a-new- era-in-tv. IFA 2012, (WHAT HI-Fi); (b) http://www.samsungces.com/ keynote.aspx. CES 2013, (Samsung).
    3. http://www.lg.com/uk/tvs/lg-55EM960V-oled-tv. 2013, (LG).
    4. https://www1.eere.energy.gov/buildings/ssl/highlights_ge.html. U.S. Department of ENERGY 2003, (GE).
    5. (a) http://www.oled-info.com/qube-oled-installation-over-1400-osram-orbeos- panels. OLED-Info.com 2011, (OSRAM); (b) http://www.archiproducts.com/en /products/29080/cluster-stainless-steel-wall-lamp-cluster-wall-benwirth-licht.html. archiproducts 2012, (Benwirth Licht); (c) http://www.oled-info.com/ lumiotec-p06-oled-lighting-panels. OLED-Info.com 2013, (Lumiotec).
    6. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. J. Chem. Phys 1963, 38 (8), 2042.
    7. Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films 1982, 94 (2), 171.
    8. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51 (12), 913.
    9. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of doped organic thin films. Appl. Phys. Lett. 1989, 65 (9), 3610.
    10. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539.
    11. (a) Lamansky, S.; Djurovich, P. I.; Abdel-Razzaq, F.; Garon, S.; Murphy, D. L.; Thompson, M. E., Cyclometalated Ir complexes in polymer organic light-emitting devices. J. Appl. Phys. 2002, 92 (3), 1570; (b) Sandee, A. J.; Williams, C. K.; Evans, N. R.; Davies, J. E.; Boothby, C. E.; Kohler, A.; Friend, R. H.; Holmes, A. B., Solution-processible conjugated electrophosphorescent polymers. J. Amer. Chem. Soc. 2004, 126 (22), 7041.
    12. (a) Rea, M. S.; Freyssinier-Nova, J. P., Color rendering: A tale of two metrics. Color Res. Appl. 2008, 33 (3), 192; (b) Hashimoto, K.; Yano, T.; Shimizu, M.; Nayatani, Y., New method for specifying color-rendering properties of light sources based on feeling of contrast. Color Res. Appl. 2007, 32 (5), 361; (c) Rea, M. S.; Freyssinier, J. P., Color rendering: Beyond pride and prejudice. COLOR RES APPL. 2010, 35 (6), 401; (d) Freyssinier, J. P.; Rea, M., A two-metric proposal to specify the color-rendering properties of light sources for retail lighting. 2010, 77840V-77840V; (e) Thornton, W. A., Color-Discrimination Index. J. Opt. Soc. Am. 1972, 62 (2), 191; (f) Smet, K.; Ryckaert, W. R.; Pointer, M. R.; Deconinck, G.; Hanselaer, P., Correlation between color quality metric predictions and visual appreciation of light sources. Opt. Express. 2011, 19 (9), 8151.
    13. Jackson, A.; Bradley, D. S.; Roy, R. N.; Clark, M., Specifications for the Chromaticity of Solid State Lighting Products. ANSI. 2011, C78 (377), 21.
    14. Ohno, Y., Standardization Activities for Solid State Lighting in the USA. Light and Lighting 2009, 34, 6.
    15. (a) Wang, R.; Liu, D.; Zhang, R.; Deng, L.; Li, J., Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes. J. Mater. Chem. 2012, 22 (4), 1411; (b) Kim, S.-J.; Zhang, Y.; Zuniga, C.; Barlow, S.; Marder, S. R.; Kippelen, B., Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends. Org. Electron. 2011, 12 (3), 492; (c) Lee, C. W.; Lee, J. Y., High quantum efficiency in solution and vacuum processed blue phosphorescent organic light emitting diodes using a novel benzofuropyridine-based bipolar host material. Adv. Mater. 2013, 25 (4), 596; (d) Kim, K. H.; Lee, J. Y.; Park, T. J.; Jeon, W. S.; Kennedy, G. P.; Kwon, J. H., Small molecule host system for solution-processed red phosphorescent OLEDs. Synth. Met. 2010, 160 (7-8), 631.
    16. (a) Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y., Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano. 2010, 4 (5), 2955; (b) Krantz, J.; Richter, M.; Spallek, S.; Spiecker, E.; Brabec, C. J., Solution-Processed Metallic Nanowire Electrodes as Indium Tin Oxide Replacement for Thin-Film Solar Cells. Adv. Funct. Mater. 2011, 21 (24), 4784; (c) You, J.-D.; Tseng, S.-R.; Meng, H.-F.; Yen, F.-W.; Lin, I. F.; Horng, S.-F., All-solution-processed blue small molecular organic light-emitting diodes with multilayer device structure. Org. Electron. 2009, 10 (8), 1610; (d) Ko, L.-C.; Liu, T.-Y.; Chen, C.-Y.; Yeh, C.-L.; Tseng, S.-R.; Chao, Y.-C.; Meng, H.-F.; Lo, S.-C.; Burn, P. L.; Horng, S.-F., Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. Org. Electron. 2010, 11 (6), 1005; (e) Yeh, H.-C.; Meng, H.-F.; Lin, H.-W.; Chao, T.-C.; Tseng, M.-R.; Zan, H.-W., All-small-molecule efficient white organic light-emitting diodes by multi-layer blade coating. Org. Electron. 2012, 13 (5), 914; (f) Lin, H.-Y.; Huang, W.-C.; Chen, Y.-C.; Chou, H.-H.; Hsu, C.-Y.; Lin, J. T.; Lin, H.-W., BODIPY dyes with [small beta]-conjugation and their applications for high-efficiency inverted small molecule solar cells. Chem. Commun. 2012, 48 (71), 8913-8915; (g) Chang, J.-H.; Chen, Y.-H.; Lin, H.-W.; Lin, Y.-T.; Meng, H.-F.; Chen, E.-C., Highly efficient inverted rapid-drying blade-coated organic solar cells. Org. Electron. 2012, 13 (4), 705-709; (h) Chang, Y.-F.; Chiu, Y.-C.; Yeh, H.-C.; Chang, H.-W.; Chen, C.-Y.; Meng, H.-F.; Lin, H.-W.; Huang, H.-L.; Chao, T.-C.; Tseng, M.-R.; Zan, H.-W.; Horng, S.-F., Unmodified small-molecule organic light-emitting diodes by blade coating. Org. Electron. 2012, 13 (10), 2149.
    17. Youn, H.; Jeon, K.; Shin, S.; Yang, M., All-solution blade–slit coated polymer light-emitting diodes. Org. Electron. 2012, 13 (8), 1470.
    18. (a) Chang, S.-C.; Liu, J.; Bharathan, J.; Yang, Y.; Onohara, J.; Kido, J., Multicolor Organic Light-Emitting Diodes Processed by Hybrid Inkjet Printing. Adv. Mater. 1999, 11 (9), 734; (b) Villani, F.; Vacca, P.; Miscioscia, R.; Nenna, G.; Burrasca, G.; Fasolino, T.; Minarini, C.; Sala, D. d., OLED with Hole-Transporting Layer Fabricated by Ink-Jet Printing. Macromol. Symp. 2009, 286 (1), 101; (c) Braga, D.; Erickson, N. C.; Renn, M. J.; Holmes, R. J.; Frisbie, C. D., High-Transconductance Organic Thin-Film Electrochemical Transistors for Driving Low-Voltage Red-Green-Blue Active Matrix Organic Light-Emitting Devices. Adv. Funct. Mater. 2012, 22 (8), 1623; (d) McGraw, G. J.; Forrest, S. R., Vapor-phase microprinting of multicolor phosphorescent organic light emitting device arrays. Adv. Mater. 2013, 25 (11), ; (e) Teichler, A.; Shu, Z.; Wild, A.; Bader, C.; Nowotny, J.; Kirchner, G.; Harkema, S.; Perelaer, J.; Schubert, U. S., Inkjet printing of chemically tailored light-emitting polymers. Eur. Polym. J. 2013, 49 (8), 2186; (g) Ely, F.; Avellaneda, C. O.; Paredez, P.; Nogueira, V. C.; Santos, T. E. A.; Mammana, V. P.; Molina, C.; Brug, J.; Gibson, G.; Zhao, L., Patterning quality control of inkjet printed PEDOT:PSS films by wetting properties. Synth. Met. 2011, 161 (19-20), 2129.
    19. (a) Gather, M. C.; Kohnen, A.; Meerholz, K., White organic light-emitting diodes. Adv. Mater. 2011, 23 (2), 233; (b) Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K., White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes
    Appl. Phys. Lett. 1994, 64 (7), 815; (c) D'Andrade, B. W.; Holmes, R. J.; Forrest, S. R., Efficient Organic Electrophosphorescent White-Light-Emitting Device with a Triple Doped Emissive Layer. Adv. Mater. 2004, 16 (7), 624; (d) Zhang, B.; Tan, G.; Lam, C. S.; Yao, B.; Ho, C. L.; Liu, L.; Xie, Z.; Wong, W. Y.; Ding, J.; Wang, L., High-efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex. Adv. Mater. 2012, 24 (14), 1873; (e) Al Attar, H. A.; Monkman, A. P.; Tavasli, M.; Bettington, S.; Bryce, M. R., White polymeric light-emitting diode based on a fluorene polymer∕Ir complex blend system. Appl. Phys. Lett. 2005, 86 (12), 121101.
    20. (a) Yu, J.; Lin, H.; Wang, F.; Lin, Y.; Zhang, J.; Zhang, H.; Wang, Z.; Wei, B., Sunlight-like, color-temperature tunable white organic light-emitting diode with high color rendering index for solid-state lighting application. J. Mater. Chem. 2012, 22 (41), 22097; (b) Sun, Y.; Forrest, S. R., High-efficiency white organic light emitting devices with three separate phosphorescent emission layers. Appl. Phys. Lett. 2007, 91 (26), 263503; (c) Chang, Y.-L.; Song, Y.; Wang, Z.; Helander, M. G.; Qiu, J.; Chai, L.; Liu, Z.; Scholes, G. D.; Lu, Z., Highly Efficient Warm White Organic Light-Emitting Diodes by Triplet Exciton Conversion. Adv. Funct. Mater. 2013, 23 (6), 705; (d) Cheng, G.; Zhang, Y.; Zhao, Y.; Lin, Y.; Ruan, C.; Liu, S.; Fei, T.; Ma, Y.; Cheng, Y., White organic light-emitting devices with a phosphorescent multiple emissive layer. Appl. Phys. Lett. 2006, 89 (4), 043504.
    21. (a) Kido, J.; Kimura, M.; Nagai, K., Multilayer White Light-Emitting Organic Electroluminescent Device. Science 1995, 267 (5202), 1332; (b) Juang, F.-S.; Hong, L.-A.; Wang, S.-H.; Tsai, Y.-S.; Gao, M.-H.; Chi, Y.; Shieh, H.-P.; Hsu, J.-S., Power Efficiency Improvement of White Phosphorescent Organic Light-Emitting Diode with Thin Double-Emitting Layers and Hole-Trapping Mechanism. Jpn. J. Appl. Phys. 2011, 50 (4), 04DK04; (c) Sasabe, H.; Takamatsu, J.; Motoyama, T.; Watanabe, S.; Wagenblast, G.; Langer, N.; Molt, O.; Fuchs, E.; Lennartz, C.; Kido, J., High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex. Adv. Mater. 2010, 22 (44), 5003; (d) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K., White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459 (7244), 234.
    22. (a) Lee, T.-W.; Noh, T.; Choi, B.-K.; Kim, M.-S.; Shin, D. W.; Kido, J., High-efficiency stacked white organic light-emitting diodes. Appl. Phys. Lett. 2008, 92 (4), 043301; (b) Chang, C.-C.; Chen, J.-F.; Hwang, S.-W.; Chen, C. H., Highly efficient white organic electroluminescent devices based on tandem architecture. Appl. Phys. Lett. 2005, 87 (25), 253501; (c) Kim, H.-K.; Kim, D. G.; Lee, K. S.; Huh, M. S.; Jeong, S. H.; Kim, K. I.; Seong, T.-Y., Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes. Appl. Phys. Lett. 2005, 86 (18), 183503; (d) Kanno, H.; Holmes, R. J.; Sun, Y.; Kena-Cohen, S.; Forrest, S. R., White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer. Adv. Mater. 2006, 18 (3), 339; (e) Park, J. S.; Lee, B. R.; Lee, J. M.; Kim, J.-S.; Kim, S. O.; Song, M. H., Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides. Appl. Phys. Lett. 2010, 96 (24), 243306.
    23. Gather, M. C.; Köhnen, A.; Falcou, A.; Becker, H.; Meerholz, K., Solution-Processed Full-Color Polymer Organic Light-Emitting Diode Displays Fabricated by Direct Photolithography. Adv. Funct. Mater. 2007, 17 (2), 191.
    24. Zhou, G.; Wong, W.-Y.; Suo, S., Recent progress and current challenges in phosphorescent white organic light-emitting diodes (WOLEDs). J. Photochem. Photobiol. C. 2010, 11 (4), 133.
    25. (a) Du, B.-S.; Liao, J.-L.; Huang, M.-H.; Lin, C.-H.; Lin, H.-W.; Chi, Y.; Pan, H.-A.; Fan, G.-L.; Wong, K.-T.; Lee, G.-H.; Chou, P.-T., Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes. Adv. Funct. Mater. 2012, 22 (16), 3491; (b) Huang, S.-Y.; Meng, H.-F.; Huang, H.-L.; Chao, T.-C.; Tseng, M.-R.; Chao, Y.-C.; Horng, S.-F., Uniform dispersion of triplet emitters in multi-layer solution-processed organic light-emitting diodes. Synth. Met. 2010, 160 (23-24), 2393; (c) Lee, D.-H.; Liu, Y.-P.; Lee, K.-H.; Chae, H.; Cho, S. M., Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes. Org. Electron. 2010, 11 (3), 427.
    26. Kawamura, Y.; Yanagida, S.; Forrest, S. R., Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. J. Appl. Phys. 2002, 92 (1), 87.
    27. (a) Yang, X.; Müller, D. C.; Neher, D.; Meerholz, K., Highly Efficient Polymeric Electrophosphorescent Diodes. Adv. Mater. 2006, 18 (7), 948-954; (b) Wu, H. B.; Zou, J. H.; Liu, F.; Wang, L.; Mikhailovsky, A.; Bazan, G. C.; Yang, W.; Cao, Y., Efficient Single Active Layer Electrophosphorescent White Polymer Light-Emitting Diodes. Adv. Mater. 2008, 20 (4), 696; (c) Nakamura, A.; Tada, T.; Mizukami, M.; Yagyu, S., Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode. Appl. Phys. Lett. 2004, 84 (1), 130.
    28. (a) Borsenberger, P. M.; Magin, E. H.; Fitzgerald, J. J., Concentration dependence of the hole mobility of 1,1-bis((di-4-tolylamino)phenyl)cyclohexane (TAPC) doped polystyrene (PS). J. Phys. Chem. 1993, 97 (36), 9213; (b) Kim, T.-Y.; Moon, D.-G., Electrical and Optical Properties of Phosphorescent Organic Light-Emitting Devices with a TAPC Host. TEEM. 2011, 12 (2), 84-87; (c) Chopra, N.; Swensen, J. S.; Polikarpov, E.; Cosimbescu, L.; So, F.; Padmaperuma, A. B., High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture. Appl. Phys. Lett. 2010, 97 (3), 033304.
    29. Chopra, N.; Lee, J.; Zheng, Y.; Eom, S.-H.; Xue, J.; So, F., High efficiency blue phosphorescent organic light-emitting device. Appl. Phys. Lett. 2008, 93 (14), 143307.
    30. (a) Koo, W. H.; Youn, W.; Zhu, P.; Li, X.-H.; Tansu, N.; So, F., Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal-Close-Packed Array. Adv. Funct. Mater. 2012, 22 (16), 3454; (b) Kim, J. B.; Lee, J. H.; Moon, C. K.; Kim, S. Y.; Kim, J. J., Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes. Adv. Mater. 2013, 25 (26), 3571.
    31. Zhang, Y.; Huang, F.; Jen, A. K. Y.; Chi, Y., High-efficiency and solution processible multilayer white polymer light-emitting diodes using neutral conjugated surfactant as an electron injection layer. Appl. Phys. Lett. 2008, 92 (6), 063303.
    32. (a) Mróz, W.; Botta, C.; Giovanella, U.; Rossi, E.; Colombo, A.; Dragonetti, C.; Roberto, D.; Ugo, R.; Valore, A.; Williams, J. A. G., Cyclometallated platinum(ii) complexes of 1,3-di(2-pyridyl)benzenes for solution-processable WOLEDs exploiting monomer and excimer phosphorescence. J. Mater. Chem. 2011, 21 (24), 8653; (b) Ye, T.; Shao, S.; Chen, J.; Wang, L.; Ma, D., Efficient phosphorescent polymer yellow-light-emitting diodes based on solution-processed small molecular electron transporting layer. ACS Appl. Mater. Interfaces. 2011, 3 (2), 410.
    33. (a) Cai, M.; Xiao, T.; Hellerich, E.; Chen, Y.; Shinar, R.; Shinar, J., High-efficiency solution-processed small molecule electrophosphorescent organic light-emitting diodes. Adv. Mater. 2011, 23 (31), 3590; (b) Doh, Y. J.; Park, J. S.; Jeon, W. S.; Pode, R.; Kwon, J. H., Soluble processed low-voltage and high efficiency blue phosphorescent organic light-emitting devices using small molecule host systems. Org. Electron. 2012, 13 (4), 586; (c) Fu, Q.; Chen, J.; Shi, C.; Ma, D., Solution-processed small molecules as mixed host for highly efficient blue and white phosphorescent organic light-emitting diodes. ACS Appl. Mater. Interfaces. 2012, 4 (12), 6579.
    34. (a) Lin, H.-P.; Zhou, F.; Li, J.; Zhang, X.-W.; Yu, D.-B.; Zhang, L.; Jiang, X.-Y.; Zhang, Z.-L., A high performance of BPhen-based white organic light-emitting devices with a dual-emitting layer and its electroluminescent spectral property. J. Ind. Eng. Chem. 2011, 17 (4), 675; (b) Wen, L.; Li, F.; Xie, J.; Wu, C.; Zheng, Y.; Chen, D.; Xu, S.; Guo, T.; Qu, B.; Chen, Z.; Gong, Q., Electroplex emission at PVK/Bphen interface for application in white organic light-emitting diodes. JOL 2011, 131 (11), 2252; (c) Liu, C.; Liu, L.; Che, G.; Cui, Y.; Wang, Q.; Li, W.; Liu, M., High response organic ultraviolet photodetectors based on 4,7-diphenyl-1,10-phenanthroline. Sol. Energy Mater. Sol. Cells 2012, 96, 29; (d) Jankus, V.; Chiang, C. J.; Dias, F.; Monkman, A. P., Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons? Adv. Mater. 2013, 25 (10), 1455; (e) Mauro, M.; Yang, C. H.; Shin, C. Y.; Panigati, M.; Chang, C. H.; D'Alfonso, G.; De Cola, L., Phosphorescent organic light-emitting diodes with outstanding external quantum efficiency using dinuclear rhenium complexes as dopants. Adv. Mater. 2012, 24 (15), 2054.
    35. (a) Stakhira, P.; Khomyak, S.; Cherpak, V.; Volyniuk, D.; Simokaitiene, J.; Tomkeviciene, A.; Kukhta, N. A.; Grazulevicius, J. V.; Kukhta, A. V.; Sun, X. W.; Demir, H. V.; Hotra, Z.; Voznyak, L., Blue organic light-emitting diodes based on pyrazoline phenyl derivative. Synth. Met. 2012, 162 (3-4), 352; (b) Tsuboi, T.; Murayama, H.; Yeh, S.-J.; Wu, M.-F.; Chen, C.-T., Photoluminescence characteristics of blue phosphorescent Ir3+-compounds FIrpic and FIrN4 doped in mCP and SimCP. Opt. Mater. 2008, 31 (2), 366; (c) Adamovich, V.; Brooks, J.; Tamayo, A.; Alexander, A. M.; Djurovich, P. I.; D'Andrade, B. W.; Adachi, C.; Forrest, S. R.; Thompson, M. E., High efficiency single dopant white electrophosphorescent light emitting diodes. New J. Chem. 2002, 26 (9), 1171; (d) Hu, D.; Lu, P.; Wang, C.; Liu, H.; Wang, H.; Wang, Z.; Fei, T.; Gu, X.; Ma, Y., Silane coupling di-carbazoles with high triplet energy as host materials for highly efficient blue phosphorescent devices. Chem. Mat. 2009, 19 (34), 6143.
    36. Li, C.-Y.; Wen, T.-C.; Guo, T.-F., Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells. J. Mater. Chem. 2008, 18 (37), 4478.
    37. (a) Strohriegl, P.; Grazulevicius, J. V., Charge-Transporting Molecular Glasses. Adv. Mater. 2002, 14 (20), 1439; (b) Fukaya, C.; Nakayama, Y.; Murayama, Y.; Omata, S.; Ishikawa, A.; Hosaka, Y.; Nakagawa, T., Improvement of hydrogelation abilities and handling of photocurable gelatin-based crosslinking materials. J. Biomed Mater. Res. B Appl. Biomater. 2009, 91 (1), 329.
    38. Bellmann, E.; Shaheen, S. E.; Thayumanavan, S.; Barlow, S.; Grubbs, R. H.; Marder, S. R.; Kippelen, B.; Peyghambarian, N., New Triarylamine-Containing Polymers as Hole Transport Materials in Organic Light-Emitting Diodes:  Effect of Polymer Structure and Cross-Linking on Device Characteristics. Chem. Mat. 1998, 10 (6), 1668.
    39. Braig, T.; Müller, D. C.; Groß, M.; Meerholz, K.; Nuyken, O., Crosslinkable hole-transporting polymers by palladium-catalyzed C—N-coupling reaction. Macromol. Rapid Commun. 2000, 21 (9), 583.
    40. Domercq, B.; Hreha, R. D.; Zhang, Y.-D.; Haldi, A.; Barlow, S.; Marder, S. R.; Kippelen, B., Organic light-emitting diodes with multiple photocrosslinkable hole-transport layers. J. Polym. Sci. Part B Polym. Phys. 2003, 41 (21), 2726.
    41. Zacharias, P.; Gather, M. C.; Rojahn, M.; Nuyken, O.; Meerholz, K., New crosslinkable hole conductors for blue-phosphorescent organic light-emitting diodes. Angew. Chem. 2007, 46 (23), 4388.
    42. Shin, J.; Um, H. A.; Cho, M. J.; Lee, T. W.; Kim, K. H.; Jin, J.-I.; Kang, S.; Park, T.; Joo, S. H.; Yang, J. H.; Choi, D. H., Cascade hole transport in efficient green phosphorescent light-emitting devices achieved by layer-by-layer solution deposition using photocrosslinkable-conjugated polymers containing oxetane side-chain moieties. J. Polym. Sci. A Polym. Chem. 2012, 50 (2), 388.
    43. Liaptsis, G.; Meerholz, K., Crosslinkable TAPC-Based Hole-Transport Materials for Solution-Processed Organic Light-Emitting Diodes with Reduced Efficiency Roll-Off. Adv. Funct. Mater. 2013, 23 (3), 359.
    44. (a) Cheng, Y.-J.; Liu, M. S.; Zhang, Y.; Niu, Y.; Huang, F.; Ka, J.-W.; Yip, H.-L.; Tian, Y.; Jen, A. K. Y., Thermally Cross-Linkable Hole-Transporting Materials on Conducting Polymer: Synthesis, Characterization, and Applications for Polymer Light-Emitting Devices. Chem. Mat. 2007, 20 (2), 413; (b) Niu, Y. H.; Liu, M. S.; Ka, J. W.; Bardeker, J.; Zin, M. T.; Schofield, R.; Chi, Y.; Jen, A. K. Y., Crosslinkable Hole-Transport Layer on Conducting Polymer for High-Efficiency White Polymer Light-Emitting Diodes. Adv. Mater. 2007, 19 (2), 300.
    45. Lin, C.-Y.; Lin, Y.-C.; Hung, W.-Y.; Wong, K.-T.; Kwong, R. C.; Xia, S. C.; Chen, Y.-H.; Wu, C.-I., A thermally cured 9,9-diarylfluorene-based triaryldiamine polymer displaying high hole mobility and remarkable ambient stability. J. Mater. Chem. 2009, 19 (22), 3618.
    46. Ma, B.; Kim, B. J.; Poulsen, D. A.; Pastine, S. J.; Fréchet, J. M. J., Multifunctional Crosslinkable Iridium Complexes as Hole Transporting/Electron Blocking and Emitting Materials for Solution-Processed Multilayer Organic Light-Emitting Diodes. Adv. Funct. Mater. 2009, 19 (7), 1024.
    47. Hung, W.-Y.; Lin, C.-Y.; Cheng, T.-L.; Yang, S.-W.; Chaskar, A.; Fan, G.-L.; Wong, K.-T.; Chao, T.-C.; Tseng, M.-R., A new thermally crosslinkable hole injection material for OLEDs. Org. Electron. 2012, 13 (11), 2508.
    48. Zuniga, C. A.; Abdallah, J.; Haske, W.; Zhang, Y.; Coropceanu, I.; Barlow, S.; Kippelen, B.; Marder, S. R., Crosslinking using rapid thermal processing for the fabrication of efficient solution-processed phosphorescent organic light-emitting diodes. Adv. Mater. 2013, 25 (12), 1739.
    49. (a) Colnin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370 (4), 354 ; (b) Zhao, J.; Bardecker, J. A.; Munro, A. M.; Liu, M. S.; Niu, Y.; Ding, I.-K.; Luo, J.; Chen, B.; Jen, A. K.-Y.; Ginger, D. S., Efficient CdSe/CdS Quantum Dot Light-Emitting Diodes Using a Thermally Polymerized Hole Transport Layer. Nano Lett. 2006, 6 (3), 463.
    50. Loudon, J. C.; Mathur, N. D.; Midgley, P. A., Charge-ordered ferromagnetic phase in La(0.5)Ca(0.5)MnO3. Nature 2002, 420 (6917), 797.
    51. Caruge, J.-M.; Halpert, J. E.; Bulovic, V.; Bawendi, M. G., NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices. Nano lett. 2006, 6 (12), 2991.
    52. Polina O. Anikeeva, J. E. H., Moungi G. Bawendi, and Vladimir Bulovic´, Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Lett. 2009, 9 (7), 2532.
    53. Qian, L.; Zheng, Y.; Choudhury, K. R.; Bera, D.; So, F.; Xue, J.; Holloway, P. H., Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today 2010, 5 (5), 384.
    54. Qian, L.; Zheng, Y.; Xue, J.; Holloway, P. H., Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nature Photon. 2011, 5, 543.
    55. Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon do, Y.; Char, K.; Lee, S.; Lee, C., Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12 (5), 2362.
    56. Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S.; Kazlas, P. T., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature Photon. 2013, 7, 407.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE