簡易檢索 / 詳目顯示

研究生: 曾富群
Tseng, Fu-Chun
論文名稱: Characteristic Analysis of Quasi Vertical Double Diffused Metal Oxide Semiconductor Field Effect Transistor
準垂直型雙擴散金氧半場效電晶體特性分析
指導教授: 龔正
Gong, J.
黃智方
Huang, Chih-Fang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 半導體元件及製程產業研發碩士專班
Industrial Technology R&D Master Program on Semiconductor Devices and Manufacturing Process
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 162
中文關鍵詞: 準垂直雙擴散金氧半場效電晶體
外文關鍵詞: QVDMOS, QVDMOSFET, quasi vertical
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Chinese Abstract
      根據2D軟體模擬的結果並參考相關XtreMOSTM文獻,我們可以知道經過設計和最佳化的準垂直型雙擴散金氧半場效電晶體的確有高崩潰電壓的承受能力(97.89 V)、低特徵導通電阻(107.64 mΩ x mm2)以及小尺寸(28.2 x 1.0 μm2)等特性。此外,我們也提出了全新可以相匹配的準垂直型雙擴散金氧半場效電晶體(崩潰電壓為99.64 V、特徵導通電阻為120.90 mΩ x mm2以及尺寸為28.0 x 1.0 μm2)。此篇論文主要研究了準垂直型雙擴散金氧半場效電晶體內部的各個結構尺寸或濃度變化對崩潰電壓和特徵導通電阻的影響。可提供後繼研究者的一個參考。


    English Abstract
    In this thesis computer aided simulation tools are used to design a Quasi Vertical Double Diffused Metal Oxide Semiconductor Field Effect Transistor (QVDMOSFET). The proposed new structure QVDMOSFET has breakdown voltage BVOFF = 99.64 V ; specific turn-on resistance RON,SP = 120.90 mΩ x mm2; and area size = 28.0 x 1μm2) . This thesis provides the research results of structural effect influence on BVOFF and RON,SP in QVDMOSFET.

    Table of Contents Chinese Abstract.,,..I English Abstract..,,.I Acknowledgements....II Table of Contents..III CHAPTER1 Overview 1 1.1 Introduction 1 1.1.1 Motivation of This Thesis 1 1.1.2 Framework of This Thesis 2 CHAPTER2 Power MOSFET 3 2.1 Structure and Operation Principles of Power MOSFET 4 2.1.1 V-groove MOSFET 4 2.1.2 U-groove MOSFET 6 2.1.3 DMOSFET 7 2.1.4 LMOSFET 9 2.2 Basic Characteristics of Power MOSFET 11 2.2.1 Impact Ionization & Avalanche Breakdown 12 2.2.2 Dielectric Breakdown 15 2.2.3 Second Breakdown 15 2.3 Key Performance Index 17 2.3.1 Channel Length 17 2.3.2 On-resistance 19 2.3.3 Threshold Voltage 20 2.4 Available Improvement Structure of Breakdown Voltage and On Resistance 22 2.4.1 Lightly Doped Drain (LDD) 22 2.4.2 Lateral Double Diffused MOSFET (LDMOS) 22 2.4.3 Reduced SURface Field (RESURF) 24 2.4.4 Double RESURF 26 2.4.5 Trench Drain Structure 27 2.4.6 Field Plate 28 2.4.7 P-buried Layer 30 2.4.8 N-buried Layer 30 2.4.9 P-sinker 31 2.4.10 Recessed Gate 31 2.4.11 Trench MOSFET (TMOS) 33 2.4.12 Rectangular-grooved MOSFET (RMOSFET) 34 2.4.13 UMOSFET 35 2.4.14 Graded Doped (GD) Trench Gate MOSFET 36 2.4.15 Super-junction (SJ) 37 CHAPTER3 Quasi Vertical Double Diffused Metal Oxide Semiconductor Field Effect Transistor (QVDMOSFET) Process and Device Characteristic 43 3.1 Device Structure & Operation Theory 43 3.2 Theory of Main Experimental Parameters 45 3.2.1 Off-breakdown Voltage (BVOFF) 50 3.2.2 Specific On-resistance (RON,SP) 53 3.2.3 Threshold Voltage (VTH) 54 3.3 Process for Fabricating power QVDMOSFET Device 56 3.3.1 P-type Wafer Preparation 56 3.3.2 Grow P-epitaxial Layer 56 3.3.3 Deposit Pad Oxidation 56 3.3.4 Mask1: N-type Buried Layer (NBL) Implant 57 3.3.5 Mask2: P-type Buried Layer (PBL) Implant 57 3.3.6 Grow N-epitaxial Layer 58 3.3.7 Mask3: Etch Silicon (1st Gate Trench Etch) 58 3.3.8 Mask4: N-sinker (Drain) 1st Implant 59 3.3.9 Mask5: P-sinker (Bulk) 1st Implant 59 3.3.10 Well Drive-in 60 3.3.11 Deposit Pad Oxide and Nitride Layer 60 3.3.12 Mask6: 2nd Gate Trench Etch 61 3.3.13 Field Oxidation (FOX) 61 3.3.14 Isotropic Etch Oxide 62 3.3.15 HV Gate Oxidation 62 3.3.16 Deposit Poly-silicon 63 3.3.17 Isotropic Etch of Poly-silicon 63 3.3.18 Mask7: Implant Boron 64 3.3.19 Mask8: Implant Phosphorous 64 3.3.20 Mask9: Implant BF2 65 3.3.21 Boro-Phospho-Silicate-Glass (BPSG) Diffusion 65 3.3.22 Mask10: Etch oxide 66 3.3.23 Deposit Aluminum 66 3.3.24 Mask11: Etch Aluminum 67 3.3.25 Final Structure of QVDMOSFET 67 CHAPTER4 2D Simulation 68 4.1 Definitions of Simulation Parameters 68 4.2 Parameters Modulation of Simulation 70 4.2.1 Concentration of 2nd N-sinker Implant 70 4.2.2 Concentration of 2nd P-sinker implant 71 4.2.3 Concentration of 1st N-sinker implant 73 4.2.4 Concentration of 1st P-sinker implant 76 4.2.5 Concentration of N-epitaxial Layer Growth 78 4.2.6 Concentration of P-epitaxial Layer Growth 81 4.2.7 Concentration of NBL implant 84 4.2.8 Concentration of PBL implant 87 4.2.9 Without PBL or P-sinker 89 4.2.10 Without NBL or N-sinker 92 4.2.11 Length between Gate and Drain (LGD) 95 4.2.12 Length between Drain and Bulk (LDB) 97 4.2.13 Sequence of 2nd Gate Trench Etching 100 4.2.14 Thickness of Gate Oxide (TOX1) 102 4.2.15 Thickness of Field Oxide (TOX2) 105 4.2.16 Thickness of N-epitaxial Layer (TNEpi) 109 4.2.17 Depth of Gate Trench 113 4.2.18 Depth of N-sinker (TD) 115 4.2.19 Length of Gate (C ) 117 4.3 Device Characteristics of Simulation 119 4.3.1 Device Characteristics with Variation of Lateral Source Quantity (Q) 119 4.3.2 BVOFF to RON,SP 133 4.4 Newly Proposed Structure 134 4.4.1 Characteristics Analysis of Newly Structure 135 4.4.2 Compare Newly Proposed Structure with Optimized QVDMOSFET 138 4.6 Layout of QVDMOSFET 152 4.7 Discussion 155 CHAPTER5 Conclusions 158 Reference 159

    Reference
    [01] AVANT! TSUPREM-4, Two-Dimensional Process Simulation Program, Version- 2006.6.0.
    [02] AVANT! MEDICI, Two-Dimensional Device Simulation Program, Version- 2006.6.0.
    [03] Moens, P.; Bauwens, F.; Baele, J.; Vershinin, K.; De Backer, E.; Sankara Narayanan, E.M.; Tack, M., “XtreMOS : The First Integrated Power Transistor Breaking the Silicon Limit”, Electron Devices Meeting, 2006, IEDM '06. International, 11-13 Dec. 2006 Page(s):1 – 4.
    [04] Roig, J.; Desoete, B.; Moens, P.; Tack, M., “Theoretical analysis of XtreMOS™ power transistors”, Solid State Device Research Conference, 2007,ESSDERC 2007. 37th European, 11-13 Sept. 2007 Page(s):422 – 425.
    [05] A. Lidow, T. Herman and H. W. Collins, "POWER MOSFET TECHNOLOGY", IEEE 1979.
    [06] B. Jayant Baliga, ”Modern Power Devices”, 1987.
    [07] Yuan Taur, TAK H. Ning, ”Fundamentals of Modern VLSI Devices”, 2006.
    [08] Eli Harari, "Dielectric breakdown in electrically stressed thin films of thermal SiO2", J. Appl. Phys. 49, 2478 , April 1978.
    [09] CHENMING HU, MIN-HWA CHI, IEEE, ”Second Breakdown of Vertical Power MOSFET’s”, 1982.
    [10] Ogura, S.; Tsang, P.J.; Walker, W.W.; Critchlow, D.L.; Shepard, J.F., “Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor”, Electron Devices, IEEE Transactions on Volume 27, Issue 8, Page(s):1359 – 1367, Aug 1980.
    [11] S. Colak, B. Singer, E. Stupp, ” Lateral Dmos Power Transistor Design,” IEEE Electron Device Letters, vol.EDL-1, pp.51-53, 1980.
    [12] J. A. Appeals, and H. M. J. Vaes, “High-voltage thin layer devices (RESURF devices)”, IEDM Tech. Dig., pp. 238-239, 1979.
    [13] Adriaan W. Ludikhuize, "A Review of RESURF Technology",IEEE 2000.
    [14] STENGL, R., and GOSELE. U, “Variation of lateral doping - A new concept to avoid high voltage breakdown of planar junctions”, IEDM Tech. Dig., 1985, pp. 154-157.
    [15] Shimoida, Y.; Hayami, Y.; Ohta, K.; Hoshi, M.; Shinohara, T., “Low on-resistance lateral U-gate MOSFET with DSS pattern layout”, Power Semiconductor Devices and ICs, 1999. ISPSD '99. Proceedings., The 11th International Symposium on 26-28 May 1999 Page(s):201 – 204.
    [16] Chih-Feng Huang, et al., “P-type LDMOS device with buried layer to solve punch-through problems and process for its manufacture”, patent US6770951, AUG 2004.
    [17] B. Murari, F. Bertotti, G.A. Vignola, “Smart power ICs :technologies and applications”, London Springer, 2002.
    [18] BJ Baliga, ”High Voltage Junction Gate Field Effect Transistor with Recessed Gates”, IEEE Transactions on Electron Devices, Vol. 29, pp. 1560-1570, 1982.
    [19] Shenai, K., “Optimized trench MOSFET technologies for power devices “, Electron Devices, IEEE Transactions Volume 39, Issue 6, June 1992 Page(s):1435 - 1443
    [20] Ueda, D.; Takagi, H.; Kano, G., “A new vertical power MOSFET structure with extremely reduced on-resistance”, Electron Devices, IEEE Transactions on Volume 32, Issue 1, Page(s):2 – 6, Jan 1985.
    [21] Temple, V.A.K., Tantraporn, W., Baliga, B.J., Chang, H-R.; Black, R.D, “Ultra low specific on-resistance UMOSFET”, Electron Devices Meeting, International Volume 32, Page(s):642 – 645, 1986.
    [22] B. J. Baliga, “A Vertical field effect transistors having improved breakdown voltage capability and low on-state resistance,” U.S. Patent 5637898, June 10, 1997.
    [23] Fujihira T, "Theory of semiconductor superjunction devices", Japanese journal of applied physics, yr:1997 vol:36 iss:10 pg:6254 -6262.
    [24]. L. Lorenz, G. Deboy, A. Knapp, and M. Marz, “COOLMOS—A new milestone n high voltage power MOS,” IEEE Int. Symp. Power Semiconductor Devices and ICs, pp. 3–10, 1999.
    [25] Yung C. Liang, K. P. Gan, and Ganesh S. Samudra, "Oxide-Bypassed VDMOS (OBVDMOS): An Alternative to Superjunction High Voltage MOS Power Devices", IEEE ELECTRON DEVICES LETTERS, VOL. 22, NO. 8, AUGUST 2001.
    [26] Yung C. Liang, Yu Chen, and Ganesh S. SAMUDRA, “Theoretical Analyses of Oxide-Bypassed Superjunction Power Metal Oxide Semiconductor Field Effect Transistor Devices”, Jpn. J. of Appl. Phys., vol. 44, pp.847-856, 2005.
    [27] B. J. Baliga, “Methods of forming power semiconductor devices having tapered trench-based insulating regions therein”, US Patent 6365462.
    [28] Darwish M., Yue C., Lui K.H., Giles F., Chan B., Chen K.-I., Pattanayak D., Chen Q., Terrill K., Owyang K., “W-gated trench power MOSFET (WFET)”, Circuits, Devices and Systems, IEE Proceedings - Volume 151, Issue 3, 17 June 2004 Page(s):238 – 242.
    [29] K. G. McKay, “Avalanche breakdown in silicon,” Phys. Rev., September 1, 1953. vol. 94, pp. 877-884, May 15, 1954.
    [30] T. N. Nguyen, “Small-geometry MOS transistors: Physics and modeling of surface- and buried-channel MOSFETs,” Ph.D. dissertation, Stanford Univ., Stanford, CA, 1984.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE