簡易檢索 / 詳目顯示

研究生: 吳冠霖
Wu, Kuan-Lin
論文名稱: 光敏劑於太陽能電池元件之工程應用
Engineering of Light-Absorbers for Dye-Sensitized Solar Cells
指導教授: 季昀
Chi, Yun
口試委員: 陳建添
Chen, Chien-Tien
周必泰
Chou, Pi-Tai
林建村
Lin, Jiann-Tsuen
呂世源
Lu, Shih-Yuan
衛子健
Wei, Tzu-Chien
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 256
中文關鍵詞: 染料敏化太陽能電池釕金屬鋨金屬鈷電解質
外文關鍵詞: dye-sensitized solar cell, ruthenium, osmium, cobalt redox mediator
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 世界正面臨著能源危機與環境污染等問題,發展可替代性、可再生的永續能源成為科學發展的重大目標。染料敏化太陽能電池屬於第三代太陽能電池,其生產成本低、可低照度發電以及可色彩化太陽能板等優點為引人注目。

    本論文中研究主題分為三個目標: 第一、開發高穩性與高效率之新型無硫氰釕金屬染料為目標。第二、開發鋨金屬光敏染料,以增加光敏劑在近紅外光的光譜響應。第三、發展新型鈷電解質應用於釕金屬光敏染料,以增加元件開路電壓,突破現有光電轉換效率的瓶頸。


    Energy and environment concerns are among the huge challenges that the world is facing today. Encouraged by this realization is the evolution of the use of cleaner alternative energy. Dye-sensitized solar cells (DSCs) are potentially attractive candidates for the low cost manufacture which convert the solar energy into electricity.
    The work conducted during this thesis aimed at optimizing the DSC using three different strategies: Developing the new class of thiocyanate-free ruthenium Ru(II) for stable and efficient DSCs, the synthesis of osmium Os(II) sensitizers to harvest a larger fraction of the solar spectrum, and optimization of the device using the cobalt based electrolyte with Ru(II) sensitizers to enhance open-circuit voltage of DSC device.
    The first two chapters are the introduction to the photovoltaic devices, operation, and characterization techniques. In Chapter 3, we develop the new series class of thiocynate-free Ru(II) sensitizers by virtue of the bidentate and tridentate analogous pyridyl pyrazolate ancillary ligands. Chapter 4, we functionalize N749 sensitizer by incorporating the highly conjugated electron donating appendages. In Chapter 5, the design of Os(II) sensitizers will be an excellent option for expanding the spectral response well into the NIR region. Last chapter, it depicts that optimization of DSCs device with cobalt based electrolyte and the challenge of dye structure design.
    All strategies: ruthenium dyes, osmium sensitizers, cobalt based electrolyte, and device optimization are developed during this thesis make a valuable contribution to the development of high stability and efficiency DSCs, which try to pave the way to get opportunity for commercialization of DSCs in the future.

    Contents II List of Figures V List of Tables XIII Chapter 1 1 Introduction 1 1.1 Basics of photovoltaic energy conversion 2 1.1.1 The solar spectrum and Air Mass 3 1.1.2 Overview of photovoltaic technologies and market 5 1.2 The dye-sensitized solar cell 9 1.2.1 Basic principle and historical background 9 1.2.2 Device structure and electron transfer processes 10 1.2.3 Working electrode 13 1.2.4 Light absorbers (sensitizers) 18 1.2.5 Redox couple mediator 29 1.2.6 Counter electrode 35 1.3 The competitive advantage of DSCs 36 1.3.1 Advantage of dye-sensitized solar cells 36 1.3.2 The commercial application of DSCs 38 1.4 Objectives and contributions of this work 40 Chapter 2 41 Experimental methods 41 2.1 Characterization 41 2.2 Device fabrication 42 2.2.1 Materials 42 2.2.2 Fabrication of mesoporous TiO2 photoanode. 46 2.2.3 Counter electrode 50 2.2.4 Spacer and sealing 50 2.2.5 All processes 50 2.3 Steady-state photovoltaic characterization 51 2.3.1 Current-voltage (I-V) characterization 51 2.3.2 Incident photon-to-current conversion efficiency (IPCE) 56 2.4 Time-resolved transient characterization 59 2.4.1 Transient photocurrent / photovoltage measurements (TPC/TPV) 59 2.4.2 Electrochemical impedance spectroscopy (EIS) 65 2.4.3 Laser transient absorbance measurement (TAS) 68 2.5 Long-term stability 71 Chapter 3 73 3.1 Introduction 73 3.2 TFRS- 1, 2, 3, 4, 21, 22, 24 sensitizers 74 3.2.1 Experimental 75 3.2.2 Results and discussion 76 3.2.3 Conclusions 91 3.3 TFRS-11~14 sensitizers 93 3.3.1 Introduction 93 3.3.2 Experimental 95 3.3.2 Results and discussion 96 3.3.3 Conclusions 111 3.4 TFRS-51~TFRS-54 sensitizers 112 3.4.1 Introduction 112 3.4.2 Experimental 115 3.4.3 Results and discussion 115 3.4.4 Conclusions 135 3.5 TF-1~4 sensitizers 136 3.5.1 Introduction 136 3.5.2 Experimental 140 3.5.3 Results and discussion 140 3.5.3 Conclusions 150 3.6 TF-11~14 sensitizers 151 3.6.1 Introduction 152 3.6.2 Experimental 153 3.5.3 Results and discussion 154 3.6.3 Conclusions 167 Chapter 4 168 Tris-thiocyanate Ru(II) Sensitizers with Functionalized Dicarboxy Terpyridine for Dye Sensitized Solar Cells 168 4.1 Introduction 169 4.2 Experimental 172 4.3 Results and discussion 172 4.3.1 Photophysical and electrochemical behaviors 172 4.3.2 Device performance characteristics 177 4.4 Conclusions 184 Chapter 5 185 Engineering of Os(II) Based Light-Absorbers for Dye-Sensitized Solar Cells 185 5.1 Introduction 186 5.2 Experimental 188 5.3 Results and discussion 189 5.4 Conclusions 200 Chapter 6 201 Engineering of Thiocyanate-free Ru(II) Sensitizers for Cobalt(II/III) mediated Dye-sensitized Solar Cells 201 6.1 Introduction 201 6.2 TFRS-41, 42 sensitizers 204 6.2.1 Photophysical and electrochemical properties 205 6.2.2 Fabrication of devices 207 6.2.3 Results and discussions 208 6.2.4 Conclusions 214 6.3 51-5ht, 51-57dht, 51-57dht.1 sensitizers 215 6.3.1 Experimental 215 6.3.2 Photophysical and electrochemical properties 216 6.3.3 Fabrication of devices 218 6.3.4 Result and discussion 223 6.3.5 Conclusions 231 Bibliography 232 Appendix I 246 Synthesis routes 246 Appendix II 250 Unpublished sensitizer 250 Acknowledgments 251 Curriculum Vitae 252

    [1] R. H. Crabtree, Energy Production and Storage: Inorganic Chemical Strategies for a Warming World, WILEY, 2010.
    [2] From International Energy Agency 2012, http://www.iea.org
    [3] Becquerel, A.E., Comptes Rendus de L´Academie des Sciences, 1839, 9, 145
    [4] C. E. Fritts, American Journal of Science, 1883, 26, 465.
    [5] Einstein, Annalen der Physik 1905, 17, 132
    [6] S. R. Wenham et al. Applied Photovoltaics, 2011
    [7] D. Laude, A History of Semiconductors from the Archaic to the Monolithic, 2012
    [8] N. S. Lewis, Science 2007, 315, 798.
    [9] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Progress in Photovoltaics: Research and Applications 2013, 21, 1.
    [10] F. O. Lenzmann, J. M. Kroon, Advances in OptoElectronics 2007, 2007.
    [11] B. O'Regan, M. Gratzel, Nature 1991, 353, 737.
    [12] C. A. Bignozzi, R. Argazzi, C. J. Kleverlaan, Chem. Soc. Rev. 2000, 29, 87.
    [13] The National Center for Photovoltaics (NCPV) at NREL, http://www.nrel.gov/ncpv/
    [14] Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2009, 2903.
    [15] G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 2009, 42, 1819.
    [16] S. Ardo, G. J. Meyer, Chem. Soc. Rev. 2009, 38, 115.
    [17] C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, The Journal of Physical Chemistry B 2002, 106, 12693.
    [18] I. Montanari, J. Nelson, J. R. Durrant, The Journal of Physical Chemistry B 2002, 106, 12203.
    [19] G. Boschloo, E. A. Gibson, A. Hagfeldt, The Journal of Physical Chemistry Letters 2011, 2, 3016.
    [20] J. R. Durrant, S. A. Haque, E. Palomares, Chem. Commun. 2006, 0, 3279.
    [21] S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc. 2005, 127, 3456.
    [22] D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler, N. S. Lewis, The Journal of Physical Chemistry B 2000, 105, 392.
    [23] J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Grätzel, J. R. Durrant, The Journal of Physical Chemistry C 2007, 111, 6561.
    [24] M. Gratzel, Nature 2001, 414, 338.
    [25] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Ceram. Soc. 1997, 80, 3157.
    [26] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 2005, 6, 215.
    [27] K. S. Lee, J. Kwon, J. H. Im, C. R. Lee, N.-G. Park, J. H. Park, ACS Applied Materials & Interfaces 2012, 4, 4164.
    [28] M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, J. Am. Chem. Soc. 2004, 126, 14943.
    [29] A. J. N. Mary D Archer, Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, 2008.
    [30] A. Hironori, Y. Takeshi, T. Akihito, A. Shinya, in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, Vol. 1, 2006, pp. 36.
    [31] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, M. Grätzel, Adv. Mater. 2006, 18, 1202.
    [32] Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, G. Cao, PCCP 2012, 14, 14982.
    [33] S. F. Zhang, X. D. Yang, Y. H. Numata, L. Y. Han, Energy & Environmental Science 2013, 6, 1443.
    [34] K. Zhu, E. A. Schiff, N. G. Park, J. van de Lagemaat, A. J. Frank, Appl. Phys. Lett. 2002, 80, 685.
    [35] H. K. Pulker, G. Paesold, E. Ritter, Appl. Opt. 1976, 15, 2986.
    [36] M. Shanmugam, M. F. Baroughi, D. Galipeau, Electron. Lett 2009, 45, 648.
    [37] M. F. Hossain, S. Biswas, T. Takahashi, Thin Solid Films 2008, 517, 1294.
    [38] H. Seo, M.-K. Son, J.-K. Kim, I. Shin, K. Prabakar, H.-J. Kim, Sol. Energy Mater. Sol. Cells 2011, 95, 340.
    [39] B. Peng, G. Jungmann, C. Jäger, D. Haarer, H.-W. Schmidt, M. Thelakkat, Coord. Chem. Rev. 2004, 248, 1479.
    [40] L. Kavan, M. Grätzel, Electrochim. Acta 1995, 40, 643.
    [41] M. Okuya, K. Nakade, S. Kaneko, Sol. Energy Mater. Sol. Cells 2002, 70, 425.
    [42] H. Yu, S. Zhang, H. Zhao, G. Will, P. Liu, Electrochim. Acta 2009, 54, 1319.
    [43] B. Yoo, K.-J. Kim, S.-Y. Bang, M. J. Ko, K. Kim, N.-G. Park, J. Electroanal. Chem. 2010, 638, 161.
    [44] M. Thelakkat, C. Schmitz, H. W. Schmidt, Adv. Mater. 2002, 14, 577.
    [45] J. Shi, J. Liang, S. Peng, W. Xu, J. Pei, J. Chen, Solid State Sciences 2009, 11, 433.
    [46] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Gratzel, Chem. Commun. 2005, 0, 4351.
    [47] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, J. Am. Chem. Soc. 1993, 115, 6382.
    [48] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, J. Am. Chem. Soc. 2001, 123, 1613.
    [49] M. K. Nazeeruddin, M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry 2001, 145, 79.
    [50] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem. Soc. 2005, 127, 16835.
    [51] A. I. Yasuo Chiba, Yuki Watanabe, Ryoichi Komiya, Naoki Koide and Liyuan Han, Jpn. J. Appl. Phys. 2006, 45, L638.
    [52] K. Hara, in Molecular Catalysts for Energy Conversion, Vol. 111 (Eds.: T. Okada, M. Kaneko), Springer Berlin Heidelberg, 2009, pp. 217.
    [53] S. M. Zakeeruddin, M. K. Nazeeruddin, R. Humphry-Baker, P. Péchy, P. Quagliotto, C. Barolo, G. Viscardi, M. Grätzel, Langmuir 2002, 18, 952.
    [54] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gratzel, Nature materials 2003, 2, 402.
    [55] P. Wang, S. M. Zakeeruddin, I. Exnar, M. Gratzel, Chem. Commun. 2002, 0, 2972.
    [56] P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin, M. Grätzel, Adv. Mater. 2004, 16, 1806.
    [57] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 2004, 127, 808.
    [58] C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, K.-C. Ho, Angew. Chem. Int. Ed. 2006, 45, 5822.
    [59] C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen, K. C. Ho, Adv. Mater. 2007, 19, 3888.
    [60] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin, M. Grätzel, ACS Nano 2009, 3, 3103.
    [61] F. Gao, Y. Cheng, Q. Yu, S. Liu, D. Shi, Y. Li, P. Wang, Inorg. Chem. 2009, 48, 2664.
    [62] Q. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang, P. Wang, The Journal of Physical Chemistry C 2009, 113, 14559.
    [63] Isaacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman:
    London, UK, 1995
    [64] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, P. Wang, ACS Nano 2010, 4, 6032.
    [65] F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 2008, 130, 10720.
    [66] D. Shi, N. Pootrakulchote, R. Li, J. Guo, Y. Wang, S. M. Zakeeruddin, M. Grätzel, P. Wang, The Journal of Physical Chemistry C 2008, 112, 17046.
    [67] F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Gratzel, Chem Commun (Camb) 2008, 2635.
    [68] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, The Journal of Physical Chemistry C 2009, 113, 6290.
    [69] S. M. Zakeeruddin, M. K. Nazeeruddin, P. Pechy, F. P. Rotzinger, R. Humphry-Baker, K. Kalyanasundaram, M. Grätzel, V. Shklover, T. Haibach, Inorg. Chem. 1997, 36, 5937.
    [70] I. Gillaizeau-Gauthier, F. Odobel, M. Alebbi, R. Argazzi, E. Costa, C. A. Bignozzi, P. Qu, G. J. Meyer, Inorg. Chem. 2001, 40, 6073.
    [71] H. Zabri, I. Gillaizeau, C. A. Bignozzi, S. Caramori, M.-F. Charlot, J. Cano-Boquera, F. Odobel, Inorg. Chem. 2003, 42, 6655.
    [72] K. Keis, J. Lindgren, S.-E. Lindquist, A. Hagfeldt, Langmuir 2000, 16, 4688.
    [73] J. Warnan, V.-M. Guerin, F. B. Anne, Y. Pellegrin, E. Blart, D. Jacquemin, T. Pauporté, F. Odobel, The Journal of Physical Chemistry C 2013, 117, 8652.
    [74] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, Sol. Energy Mater. Sol. Cells 2001, 70, 151.
    [75] G. Boschloo, L. Häggman, A. Hagfeldt, The Journal of Physical Chemistry B 2006, 110, 13144.
    [76] R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke, N. Koide, The Journal of Physical Chemistry C 2009, 113, 20738.
    [77] N. Kopidakis, N. R. Neale, A. J. Frank, The Journal of Physical Chemistry B 2006, 110, 12485.
    [78] S. Kambe, S. Nakade, T. Kitamura, Y. Wada, S. Yanagida, The Journal of Physical Chemistry B 2002, 106, 2967.
    [79] S. M. Feldt, G. Wang, G. Boschloo, A. Hagfeldt, The Journal of Physical Chemistry C 2011, 115, 21500.
    [80] Y. Liu, J. R. Jennings, Y. Huang, Q. Wang, S. M. Zakeeruddin, M. Grätzel, The Journal of Physical Chemistry C 2011, 115, 18847.
    [81] E. Olsen, G. Hagen, S. Eric Lindquist, Sol. Energy Mater. Sol. Cells 2000, 63, 267.
    [82] T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-m. Chen, H.-s. Shiu, The Journal of Physical Chemistry C 2007, 111, 4847.
    [83] M. Wang, A. M. Anghel, B. t. Marsan, N.-L. Cevey Ha, N. Pootrakulchote, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131, 15976.
    [84] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, Thin Solid Films 2008, 516, 4613.
    [85] T. Markvart, L. Castaner, Solar Cells: Materials, Manufacture and Operation, Elsevier Science, 2004.
    [86] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Gratzel, The Journal of Physical Chemistry B 2003, 107, 14336.
    [87] K. G. Brooks, S. D. Burnside, V. Shklover, P. Comte, F. Arendse, A. McEvoy, M. Gratzel, in Processing and Characterization of Electrochemical Materials and Device, American Ceramic Society, 2000, pp. 115.
    [88] A. Selloni, Nature materials 2008, 7, 613.
    [89] T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, N. Tanabe, Journal of Photochemistry and Photobiology A: Chemistry 2004, 164, 199.
    [90] S. M. Sze. Semiconductor devices, physics and technology. John Wiley & Sons, New York, 2nd edition 2002.
    [91] L.-L. Li, Y.-C. Chang, H.-P. Wu, E. W.-G. Diau, Int. Rev. Phys. Chem. 2012, 31, 420.
    [92] X. Wang, S. Karanjit, L. Zhang, H. Fong, Q. Qiao, Z. Zhu, Appl. Phys. Lett. 2011, 98, 082114.
    [93] N. W. Duffy, L. M. Peter, K. G. U. Wijayantha, Electrochem. Commun. 2000, 2, 262.
    [94] N. W. Duffy, L. M. Peter, R. M. G. Rajapakse, K. G. U. Wijayantha, Electrochem. Commun. 2000, 2, 658.
    [95] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, 2001.
    [96] Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, H. Imai, The Journal of Physical Chemistry B 2006, 110, 25210.
    [97] J. Halme, P. Vahermaa, K. Miettunen, P. Lund, Adv. Mater. 2010, 22, E210.
    [98] K. Kalyanasundaram, Dye-sensitized Solar Cells, 2010, EPFL Press, Lausanne (Switzerland)

    [99] J.-H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin, M. Gratzel, Energy & Environmental Science 2011, 4, 842.
    [100] P. Tuyet Nguyen, R. Degn, H. Thai Nguyen, T. Lund, Sol. Energy Mater. Sol. Cells 2009, 93, 1939.
    [101] A. Islam, F. A. Chowdhury, Y. Chiba, R. Komiya, N. Fuke, N. Ikeda, K. Nozaki, L. Han, Chem. Mater. 2006, 18, 5178.
    [102] T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, K. Kasuga, Y. Kawanishi, H. Sugihara, Chem. Lett. 2009, 38, 62.
    [103] S. H. Wadman, J. M. Kroon, K. Bakker, M. Lutz, A. L. Spek, G. P. M. van Klink, G. van Koten, Chem. Commun. 2007, 0, 1907.
    [104] S. H. Wadman, J. M. Kroon, K. Bakker, R. W. A. Havenith, G. P. M. van Klink, G. van Koten, Organometallics 2010, 29, 1569.
    [105] T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131, 5930.
    [106] H. Ozawa, M. Awa, T. Ono, H. Arakawa, Chemistry – An Asian Journal 2012, 7, 156.
    [107] J.-H. Yum, S.-R. Jang, P. Walter, T. Geiger, F. Nuesch, S. Kim, J. Ko, M. Gratzel, M. K. Nazeeruddin, Chem. Commun. 2007, 0, 4680.
    [108] K. Hara, Y. Dan-oh, C. Kasada, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Langmuir 2004, 20, 4205.
    [109] B. C. O'Regan, K. Bakker, J. Kroeze, H. Smit, P. Sommeling, J. R. Durrant, The Journal of Physical Chemistry B 2006, 110, 17155.
    [110] B. C. O'Regan, J. R. Durrant, The Journal of Physical Chemistry B 2006, 110, 8544.
    [111] B. C. O’Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S. M. Zakeeruddin, C. d. Klein, J. R. Durrant, J. Am. Chem. Soc. 2009, 131, 3541.
    [112] H. Kusama, H. Sugihara, Journal of Photochemistry and Photobiology A: Chemistry 2007, 187, 233.
    [113] H. Kusama, H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry 2004, 164, 103.
    [114] Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N.-G. Park, K. Kim, W. I. Lee, Adv. Mater. 2009, 21, 3668.
    [115] X. Wu, Z. Chen, G. Q. Lu, L. Wang, Adv. Funct. Mater. 2011, 21, 4167.
    [116] F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R. A. Caruso, M. Grätzel, ACS Nano 2010, 4, 4420.
    [117] S. Yanagida, Y. Yu, K. Manseki, Acc. Chem. Res. 2009, 42, 1827.
    [118] T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. Van Ryswyk, J. T. Hupp, Energy Environ. Sci. 2008, 1, 66.
    [119] H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res. 2009, 42, 1809.
    [120] A. Reynal, E. Palomares, Eur. J. Inorg. Chem. 2011, 4509.
    [121] Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2903.
    [122] G. C. Vougioukalakis, A. I. Philippopoulos, T. Stergiopoulos, P. Falaras, Coord. Chem. Rev. 2011, 255, 2602.
    [123] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
    [124] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nat. Mater. 2003, 2, 402.
    [125] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-H. Ngoc-Le, J.-D. Decoppet, J.-H. Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin, M. Grätzel, ACS Nano 2009, 3, 3103.
    [126] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, J. Phys. Chem. C 2009, 113, 6290.
    [127] S.-H. Yang, K.-L. Wu, Y. Chi, Y.-M. Cheng, P.-T. Chou, Angew. Chem. Int. Ed. 2011, 50, 8270.
    [128] S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Gratzel, M. K. Nazeeruddin, PCCP 2012, 14, 10631.
    [129] C.-S. Lim, S. H. Im, J. H. Rhee, Y. H. Lee, H.-J. Kim, N. Maiti, Y. Kang, J. A. Chang, M. K. Nazeeruddin, M. Gratzel, S. I. Seok, J. Mater. Chem. 2012, 22, 1107.
    [130] M. Grätzel, Inorg. Chem. 2005, 44, 6841.
    [131] L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang, M. Yanagida, Energy Environ. Sci. 2012, 5, 6057.
    [132] F. Nour-Mohhamadi, S. D. Nguyen, G. Boschloo, A. Hagfeldt, T. Lund, J. Phys. Chem. B 2005, 109, 22413.
    [133] T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131, 5930.
    [134] S. H. Wadman, J. M. Kroon, K. Bakker, M. Lutz, A. L. Spek, G. P. M. van Klink, G. van Koten, Chem. Commun. 2007, 1907.
    [135] S. H. Wadman, J. M. Kroon, K. Bakker, R. W. A. Havenith, G. P. M. van Klink, G. van Koten, Organometallics 2010, 29, 1569.
    [136] P. G. Bomben, K. D. Theriault, C. P. Berlinguette, Eur. J. Inorg. Chem. 2011, 1806.
    [137] K. C. D. Robson, B. D. Koivisto, A. Yella, B. Sporinova, M. K. Nazeeruddin, T. Baumgartner, M. Grätzel, C. P. Berlinguette, Inorg. Chem. 2011, 50, 5494.
    [138] Y. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota, K. Domen, Adv. Mater. 2012, n/a.
    [139] P.-T. Chou, Y. Chi, Eur. J. Inorg. Chem. 2006, 3319.
    [140] P.-T. Chou, Y. Chi, Chem. Eur. J. 2007, 13, 380.
    [141] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
    [142] K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu, P.-T. Chou, Chem. Commun. 2010, 46, 5124.
    [143] K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu, P.-T. Chou, Chem. Commun. 2010, 46, 5124.
    [144] S. E. Koops, B. C. O'Regan, P. R. F. Barnes, J. R. Durrant, J. Am. Chem. Soc. 2009, 131, 4808.
    [145] S. Ito, K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Pechy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Grätzel, Prog. Photovolt: Res. Appl. 2006, 14, 589.
    [146] D. Kuang, S. Ito, B. Wenger, C. Klein, J.-E. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 2006, 128, 4146.
    [147] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev. 2004, 248, 1381.
    [148] B. C. O'Regan, K. Walley, M. Juozapavicius, A. Anderson, F. Matar, T. Ghaddar, S. M. Zakeeruddin, C. Klein, J. R. Durrant, J. Am. Chem. Soc. 2009, 131, 3541.
    [149] M. Miyashita, K. Sunahara, T. Nishikawa, Y. Uemura, N. Koumura, K. Hara, A. Mori, T. Abe, E. Suzuki, S. Mori, J. Am. Chem. Soc. 2008, 130, 17874.
    [150] Q. Yu, S. Liu, M. Zhang, N. Cai, Y. Wang, P. Wang, J. Phys. Chem. C 2009, 113, 14559.
    [151] G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 2009, 42, 1819.
    [152] S. Ardo, G. J. Meyer, Chem. Soc. Rev. 2009, 38, 115.
    [153] C. Klein, M. K. Nazeeruddin, P. Liska, D. Di Censo, N. Hirata, E. Palomares, J. R. Durrant, M. Grätzel, Inorg. Chem. 2005, 44, 178.
    [154] S.-R. Jang, J.-H. Yum, C. Klein, K.-J. Kim, P. Wagner, D. Officer, M. Grätzel, M. K. Nazeeruddin, J. Phys. Chem. C 2009, 113, 1998.
    [155] A. Mishra, N. Pootrakulchote, M. Wang, S.-J. Moon, S. M. Zakeeruddin, M. Grätzel, P. Bäuerle, Adv. Funct. Mater. 2011, 21, 963.
    [156] M. Miyashita, K. Sunahara, T. Nishikawa, Y. Uemura, N. Koumura, K. Hara, A. Mori, T. Abe, E. Suzuki, S. Mori, J. Am. Chem. Soc. 2008, 130, 17874.
    [157] F. Sauvage, S. Chhor, A. Marchioro, J.-E. Moser, M. Grätzel, J. Am. Chem. Soc. 2011, 133, 13103.
    [158] L. M. Goncalves, V. de Zea Bermudez, H. A. Ribeiro, A. M. Mendes, Energy Environ. Sci. 2008, 1, 655.
    [159] Y.-S. Yen, H.-H. Chou, Y.-C. Chen, C.-Y. Hsu, J. T. Lin, J. Mater. Chem. 2012, 22, 8734.
    [160] A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
    [161] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613.
    [162] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem. 1999, 38, 6298.
    [163] S. Fantacci, F. De Angelis, Coord. Chem. Rev. 2011, 255, 2704.
    [164] P. Xie, F. Guo, Curr. Org. Chem. 2011, 15, 3849.
    [165] M. K. Nazeeruddin, E. Baranoff, M. Grätzel, Solar Energy 2011, 85, 1172.
    [166] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835.
    [167] H.-J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N.-G. Park, Adv. Mater. 2008, 20, 195.
    [168] J. N. Clifford, E. Martinez-Ferrero, E. Palomares, J. Mater. Chem. 2012, 22, 12415.
    [169] Y. Bai, J. Zhang, D. Zhou, Y. Wang, M. Zhang, P. Wang, J. Am. Chem. Soc. 2011, 133, 11442.
    [170] T. Marinado, K. Nonomura, J. Nissfolk, M. K. Karlsson, D. P. Hagberg, L. Sun, S. Mori, A. Hagfeldt, Langmuir 2010, 26, 2592.
    [171] H. Kusama, K. Sayama, J. Phys. Chem. C 2012, 116, 1493.
    [172] X. Zong, M. Liang, T. Chen, J. Jia, L. Wang, Z. Sun, S. Xue, Chem. Commun. 2012, 48, 6645.
    [173] J. L. Segura, H. Herrera, P. Baeuerle, J. Mater. Chem. 2012, 22, 8717.
    [174] S.-Y. Chang, J. Kavitha, J.-Y. Hung, Y. Chi, Y.-M. Cheng, E. Y. Li, P.-T. Chou, G.-H. Lee, A. J. Carty, Inorg. Chem. 2007, 46, 7064.
    [175] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
    [176] Y. Cui, Y. Wu, X. Lu, X. Zhang, G. Zhou, F. B. Miapeh, W. Zhu, Z.-S. Wang, Chem. Mater. 2011, 23, 4394.
    [177] K. Pei, Y. Wu, W. Wu, Q. Zhang, B. Chen, H. Tian, W. Zhu, Chem. Eur. J. 2012, 18, 8190.
    [178] C. Li, J.-H. Yum, S.-J. Moon, A. Herrmann, F. Eickemeyer, N. G. Pschirer, P. Erk, J. Schoeneboom, K. Muellen, M. Grätzel, M. K. Nazeeruddin, ChemSusChem 2008, 1, 615.
    [179] J.-H. Yum, D. P. Hagberg, S.-J. Moon, K. M. Karlsson, T. Marinado, L. Sun, A. Hagfeldt, M. K. Nazeeruddin, M. Grätzel, Angew. Chem. Int. Ed. 2009, 48, 1576.
    [180] D.-Y. Chen, Y.-Y. Hsu, H.-C. Hsu, B.-S. Chen, Y.-T. Lee, H. Fu, M.-W. Chung, S.-H. Liu, H.-C. Chen, Y. Chi, P.-T. Chou, Chem. Commun. 2010, 46, 5256.
    [181] S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Grätzel, Progress in Photovoltaics: Research and Applications 2006, 14, 589.
    [182] X. Yang, M. Yanagida, L. Han, Energy & Environmental Science 2013, 6, 54.
    [183] N. R. Neale, N. Kopidakis, J. van de Lagemaat, M. Grätzel, A. J. Frank, J. Phys. Chem. B 2005, 109, 23183.
    [184] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 2003, 107, 8981.
    [185] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 2005, 87, 117.
    [186] M. S. Goes, E. Joanni, E. C. Muniz, R. Savu, T. R. Habeck, P. R. Bueno, F. Fabregat-Santiago, J. Phys. Chem. C 2012, 116, 12415.
    [187] J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Grätzel, J. Nelson, X. Li, N. J. Long, J. R. Durrant, J. Am. Chem. Soc. 2004, 126, 5225.
    [188] I. Montanari, J. Nelson, J. R. Durrant, J. Phys. Chem. B 2002, 106, 12203.
    [189] M. Garcia-Iglesias, L. Pelleja, J.-H. Yum, D. Gonzalez-Rodriguez, M. K. Nazeeruddin, M. Graetzel, J. N. Clifford, E. Palomares, P. Vazquez, T. Torres, Chem. Sci. 2012, 3, 1177.
    [190] K.-L. Wu, C.-H. Li, Y. Chi, J. N. Clifford, L. Cabau, E. Palomares, Y.-M. Cheng, H.-A. Pan, P.-T. Chou, J. Am. Chem. Soc. 2012, 134, 7488.
    [191] A. Listorti, C. Creager, P. Sommeling, J. Kroon, E. Palomares, A. Fornelli, B. Breen, P. R. F. Barnes, J. R. Durrant, C. Law, B. O'Regan, Energy Environ. Sci. 2011, 4, 3494.
    [192] T. Stergiopoulos, P. Falaras, Adv. Energy Mater. 2012, 2, 616.
    [193] K.-J. Jiang, N. Masaki, J.-b. Xia, S. Noda, S. Yanagida, Chem. Commun. 2006, 0, 2460.
    [194] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. Int. Ed. 2009, 48, 2474.
    [195] S. Ghosh, G. K. Chaitanya, K. Bhanuprakash, M. K. Nazeeruddin, M. Grätzel, P. Y. Reddy, in Inorg. Chem., Vol. 45, American Chemical Society, 2006, pp. 7600.
    [196] Y. Tachibana, M. K. Nazeeruddin, M. Grätzel, D. R. Klug, J. R. Durrant, Chem. Phys. 2002, 285, 127.
    [197] B.-S. Chen, K. Chen, Y.-H. Hong, W.-H. Liu, T.-H. Li, C.-H. Lai, P.-T. Chou, Y. Chi, G.-H. Lee, Chem. Commun. 2009, 5844.
    [198] J. B. Lamture, Z. H. Zhou, A. S. Kumar, T. G. Wensel, Inorg. Chem. 1995, 34, 864.
    [199] Z.-S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, Langmuir 2005, 21, 4272.
    [200] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, The Journal of Physical Chemistry B 2003, 107, 8981.
    [201] T. Marinado, K. Nonomura, J. Nissfolk, M. K. Karlsson, D. P. Hagberg, L. Sun, S. Mori, A. Hagfeldt, Langmuir 2009, 26, 2592.
    [202] Dipole sign is defined to have a direction points from the negative to the positive charge.
    [203] S. Rühle, M. Greenshtein, S. G. Chen, A. Merson, H. Pizem, C. S. Sukenik, D. Cahen, A. Zaban, The Journal of Physical Chemistry B 2005, 109, 18907.
    [204] Z. Zhang, N. Evans, S. M. Zakeeruddin, R. Humphry-Baker, M. Grätzel, The Journal of Physical Chemistry C 2006, 111, 398.
    [205] W. H. Howie, F. Claeyssens, H. Miura, L. M. Peter, J. Am. Chem. Soc. 2008, 130, 1367.
    [206] P. Chen, J. H. Yum, F. D. Angelis, E. Mosconi, S. Fantacci, S.-J. Moon, R. H. Baker, J. Ko, M. K. Nazeeruddin, M. Grätzel, Nano Lett. 2009, 9, 2487.
    [207] U. B. Cappel, S. M. Feldt, J. Schöneboom, A. Hagfeldt, G. Boschloo, J. Am. Chem. Soc. 2010, 132, 9096.
    [208] Y. Liang, B. Peng, J. Chen, The Journal of Physical Chemistry C 2010, 114, 10992.
    [209] Y. Chi, P.-T. Chou, Chem. Soc. Rev. 2007, 36, 1421.
    [210] B.-S. Chen, K. Chen, Y.-H. Hong, W.-H. Liu, T.-H. Li, C.-H. Lai, P.-T. Chou, Y. Chi, G.-H. Lee, Chem. Commun. 2009, 5844.
    [211] K. Chen, Y.-H. Hong, Y. Chi, W.-H. Liu, B.-S. Chen, P.-T. Chou, J. Mater. Chem. 2009, 19, 5329.
    [212] P. G. Bomben, T. J. Gordon, E. Schott, C. P. Berlinguette, Angew. Chem. Int. Ed. 2011, 50, 10682.
    [213] C.-C. Chou, K.-L. Wu, Y. Chi, W.-P. Hu, S. J. Yu, G.-H. Lee, C.-L. Lin, P.-T. Chou, Angew. Chem. Int. Ed. 2011, 50, 2054.
    [214] J.-J. Kim, H. Choi, S. Paek, C. Kim, K. Lim, M.-J. Ju, H. S. Kang, M.-S. Kang, J. Ko, Inorg. Chem. 2011, 50, 11340.
    [215] M. Planells, L. Pelleja, J. N. Clifford, M. Pastore, F. De Angelis, N. Lopez, S. R. Marder, E. Palomares, Energy Environ. Sci. 2011, 4, 1820.
    [216] F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Grätzel, Chem. Commun. 2008, 2635.
    [217] Z.-S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, Langmuir 2005, 21, 4272.
    [218] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 2006, 45, L638.
    [219] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 2005, 87, 117.
    [220] J.-i. Nishida, T. Masuko, Y. Cui, K. Hara, H. Shibuya, M. Ihara, T. Hosoyama, R. Goto, S. Mori, Y. Yamashita, J. Phys. Chem. C 2010, 114, 17920.
    [221] N. Koumura, Z.-S. Wang, M. Miyashita, Y. Uemura, H. Sekiguchi, Y. Cui, A. Mori, S. Mori, K. Hara, J. Mater. Chem. 2009, 19, 4829.
    [222] F. Matar, T. H. Ghaddar, K. Walley, T. DosSantos, J. R. Durrant, B. O'Regan, J. Mater. Chem. 2008, 18, 4246.
    [223] A. Reynal, A. Forneli, E. Palomares, Energy Environ. Sci. 2010, 3, 805.
    [224] T. Privalov, G. Boschloo, A. Hagfeldt, P. H. Svensson, L. Kloo, J. Phys. Chem. C 2009, 113, 783.
    [225] M. GrÄtzel, Acc. Chem. Res. 2009, 42, 1788.
    [226] J. Preat, D. Jacquemin, E. A. Perpete, Energy & Environmental Science 2010, 3, 891.
    [227] Z. Ning, Y. Fu, H. Tian, Energy & Environmental Science 2010, 3, 1170.
    [228] J. N. Clifford, E. Martinez-Ferrero, A. Viterisi, E. Palomares, Chem. Soc. Rev. 2011, 40, 1635.
    [229] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, The Journal of Physical Chemistry B 2003, 107, 8981.
    [230] C. Lee, J. H. Yum, H. Choi, S. Ook Kang, J. Ko, R. Humphry-Baker, M. Gratzel, M. K. Nazeeruddin, Inorg. Chem. 2008, 47, 2267.
    [231] J.-J. Kim, H. Choi, C. Kim, M.-S. Kang, H. S. Kang, J. Ko, Chem. Mater. 2009, 21, 5719.
    [232] W.-C. Chang, H.-S. Chen, T.-Y. Li, N.-M. Hsu, Y. S. Tingare, C.-Y. Li, Y.-C. Liu, C. Su, W.-R. Li, Angew. Chem. Int. Ed. 2010, 49, 8161.
    [233] T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, K. Kasuga, Y. Kawanishi, M. Kurashige, K. Sayama, H. Sugihara, Inorg. Chem. Commun. 2009, 12, 842.
    [234] A. Islam, H. Sugihara, M. Yanagida, K. Hara, G. Fujihashi, Y. Tachibana, R. Katoh, S. Murata, H. Arakawa, New J. Chem. 2002, 26, 966.
    [235] C.-C. Chou, K.-L. Wu, Y. Chi, W.-P. Hu, S. J. Yu, G.-H. Lee, C.-L. Lin, P.-T. Chou, Angew. Chem. 2011, 123, 2102.
    [236] K. Chen, Y.-H. Hong, Y. Chi, W.-H. Liu, B.-S. Chen, P.-T. Chou, J. Mater. Chem. 2009, 19, 5329.
    [237] F. De Angelis, S. Fantacci, A. Selloni, M. K. Nazeeruddin, M. Grätzel, The Journal of Physical Chemistry C 2010, 114, 6054.
    [238] W.-H. Liu, I. C. Wu, C.-H. Lai, C.-H. Lai, P.-T. Chou, Y.-T. Li, C.-L. Chen, Y.-Y. Hsu, Y. Chi, Chem. Commun. 2008, 0, 5152.
    [239] R. Li, X. Lv, D. Shi, D. Zhou, Y. Cheng, G. Zhang, P. Wang, The Journal of Physical Chemistry C 2009, 113, 7469.
    [240] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915.
    [241] M. Wang, S. J. Moon, D. Zhou, F. Le Formal, N. L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, P. Wang, S. M. Zakeeruddin, M. Grätzel, Adv. Funct. Mater. 2010, 20, 1821.
    [242] C. Barolo, M. K. Nazeeruddin, S. Fantacci, D. Di Censo, P. Comte, P. Liska, G. Viscardi, P. Quagliotto, F. De Angelis, S. Ito, M. Grätzel, Inorg. Chem. 2006, 45, 4642.
    [243] S. P. H. Mee, V. Lee, J. E. Baldwin, Chemistry – A European Journal 2005, 11, 3294.
    [244] A. Puglisi, M. Benaglia, G. Roncan, Eur. J. Org. Chem. 2003, 2003, 1552.
    [245] H.-J. Park, K. H. Kim, S. Y. Choi, H.-M. Kim, W. I. Lee, Y. K. Kang, Y. K. Chung, Inorg. Chem. 2010, 49, 7340.
    [246] M.-X. Li, X. Zhou, B.-H. Xia, H.-X. Zhang, Q.-J. Pan, T. Liu, H.-G. Fu, C.-C. Sun, Inorg. Chem. 2008, 47, 2312.
    [247] E. S. Böes, P. R. Livotto, H. Stassen, Chem. Phys. 2006, 331, 142.
    [248] P.-T. Chou, Y. Chi, Chemistry – A European Journal 2007, 13, 380.
    [249] Y. Chi, P.-T. Chou, Chem. Soc. Rev. 2007, 36, 1421.
    [250] H. J. Snaith, Adv. Funct. Mater. 2010, 20, 13.
    [251] M. Grätzel, Acc. Chem. Res. 2009, 42, 1788.
    [252] Y. Luo, D. Li, Q. Meng, Adv. Mater. 2009, 21, 4647.
    [253] J.-J. Kim, H. Choi, C. Kim, M.-S. Kang, H.-S. Kang, J. Ko, Chem. Mater. 2009, 21, 5719.
    [254] M. Wang, S.-J. Moon, D. Zhou, F. Le Formal, N.-L. Cevey-Ha, R. Humphry-Baker, C. Grätzel, P. Wang, S. M. Zakeeruddin, M. Grätzel, Adv. Funct. Mater. 2010, 20, 1821.
    [255] A. Abbotto, F. Sauvage, C. Barolo, F. De Angelis, S. Fantacci, M. Grätzel, N. Manfredi, C. Marinzi, M. K. Nazeeruddin, Dalton Trans. 2011, 40, 234.
    [256] Q.-J. Pan, Y.-R. Guo, L. Li, S. O. Odoh, H.-G. Fu, H.-X. Zhang, Phys. Chem. Chem. Phys. 2011, 13, 14481.
    [257] G. Sauve, M. E. Cass, G. Coia, S. J. Doig, I. Lauermann, K. E. Pomykal, N. S. Lewis, J. Phys. Chem. B 2000, 104, 6821.
    [258] S. Altobello, R. Argazzi, S. Caramori, C. Contado, S. Da Fre, P. Rubino, C. Chone, G. Larramona, C. A. Bignozzi, J. Am. Chem. Soc. 2005, 127, 15342.
    [259] A. C. Onicha, F. N. Castellano, J. Phys. Chem. C 2010, 114, 6831.
    [260] T. Yamaguchi, T. Miyabe, T. Ono, H. Arakawa, Chem. Commun. 2010, 46, 5802.
    [261] S. Verma, P. Kar, A. Das, D. K. Palit, H. N. Ghosh, Chem. Eur. J. 2010, 16, 611.
    [262] W. J. Youngblood, S.-H. A. Lee, K. Maeda, T. E. Mallouk, Acc. Chem. Res. 2009, 42, 1966.
    [263] M. Alebbi, C. A. Bignozzi, T. A. Heimer, G. M. Hasselmann, G. J. Meyer, J. Phys. Chem. B 1998, 102, 7577.
    [264] H.-Y. Hsieh, C.-H. Lin, G.-M. Tu, Y. Chi, G.-H. Lee, Inorg. Chim. Acta 2009, 362, 4734.
    [265] E. Z. Jandrasics, F. R. Keene, J. Chem. Soc. Dalton Trans. 1997, 153.
    [266] D. Kuciauskas, M. S. Freund, H. B. Gray, J. R. Winkler, N. S. Lewis, J. Phys. Chem. B 2001, 105, 392.
    [267] J. N. Clifford, E. Palomares, M. K. Nazeeruddin, M. Grätzel, J. R. Durrant, J. Phys. Chem. C 2007, 111, 6561.
    [268] A. Listorti, B. O'Regan, J. R. Durrant, Chem. Mater. 2011, 23, 3381.
    [269] G. Boschloo, E. A. Gibson, A. Hagfeldt, J. Phys. Chem. Lett. 2011, 2, 3016.
    [270] T. Daeneke, T.-H. Kwon, A. B. Holmes, N. W. Duffy, U. Bach, L. Spiccia, Nat. Chem. 2011, 3, 211.
    [271] S. Zhang, X. Yang, K. Zhang, H. Chen, M. Yanagida, L. Han, Phys. Chem. Chem. Phys. 2011, 13, 19310.
    [272] A. Y. Anderson, P. R. F. Barnes, J. R. Durrant, B. C. O'Regan, J. Phys. Chem. C 2011, 115, 2439.
    [273] S. M. Feldt, E. A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, J. Am. Chem. Soc. 2010, 132, 16714.
    [274] H. N. Tsao , C. Yi , T. Moehl, J.-H. Yum, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, ChemSusChem 2011, 4, 591.
    [275] J. J. Nelson, T. J. Amick, C. M. Elliott, The Journal of Physical Chemistry C 2008, 112, 18255.
    [276] H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, The Journal of Physical Chemistry B 2001, 105, 10461.
    [277] S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, C. A. Bignozzi, J. Am. Chem. Soc. 2002, 124, 11215.
    [278] A. K. Chandiran, F. d. r. Sauvage, M. Casas-Cabanas, P. Comte, S. M. Zakeeruddin, M. Graetzel, The Journal of Physical Chemistry C 2010, 114, 15849.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE