研究生: |
黃仁聰 Ren-Tsung Huang |
---|---|
論文名稱: |
散熱座自然對流性能與其主動增益之研究 Performance of Heat Sink under Natural Convection -with/without Active Augmentation |
指導教授: |
許文震
Wen-Jenn Sheu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 散熱座 、自然對流 、電液動力學 、壓電風扇 、黏膠 、集中質量振動模型 、阻尼因子 |
外文關鍵詞: | heat sink, natural convection, electrohydrodynamics, piezoelectric fan, bonding glue, lumped-mass model, damping factor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This dissertation presents the passive and active heat transfer enhancement techniques. Performance of extended surfaces is studied in terms of passive techniques and the effects of electrohydrodynamics (EHD) and piezoelectric fans are discussed in terms of active ones. The present work mainly includes three parts. The first part presents an experimental study on natural convection from pin fin heat sinks subject to the influence of orientation. The second part reports an attempt on the implementation of an EHD integrated thermal module. The third part presents an experimental and theoretical study on the vibration characteristics as well as a test on the thermal performance of piezoelectric fans. In the first part, it is found that the increase in fin surfaces is more effective for downward arrangement and is less effective for sideward arrangement. This argument is supported by showing that the augmentation factor (ξ), defined as the heat transfer of a heat sink relative to that of a flat plate, is around 1.1~2.5 for the upward arrangement, around 0.8~1.8 for the sideward arrangement, and around 1.2~3.2 for the downward arrangement. Turning to the second part, it is observed that heat transfer enhancement is evident when a corona discharge of above 1 μA is established. The enhancement ratio (γ), defined as the average heat transfer coefficient with EHD relative to that without EHD, increases with the electric power input and linearly with the 1/4 power of the corona current. For moderate test condition, the enhancement ratio is around 3~5 with a preferable normalized electrode height of around 0.25~0.35. For a given electrode height, there is an optimal electrode density below which the required area exposed to the corona wind is insufficient, and beyond which the flow interference caused by adjacent electrodes offsets the effective performance. With respect to the third part, a 2-D lumped mass model with a variable air damping factor is proposed to describe the motion of piezoelectric fans. Numerical results show that the vibration amplitude of fan tip linearly increases with the applied voltage without any air loading; however the vibration amplitude decreases with the presence of air loading. In particular, experimental results indicate that the presence of glue layer contributes an additional structure damping that further reduces the vibration amplitude of the system. As for the thermal performance of piezoelectric fans, the enhancement ratio increases with the tip amplitude and with decreasing the separation distance. The effect of fan orientation gradually loses strength as this distance is lengthened. In particular, in similarity with the electric wind, the enhancement ratio decreases with increasing the heat dissipation as a result of augmented buoyancy convection. In the end, it is believed that the present work contributes the understanding of heat sink performances in natural convection and advances the implementation of EHD and the development of piezoelectric fans.
本論文旨在探討被動式與主動式之熱傳增強技術,在被動式增強技術上探討延伸表面積的熱傳特性,在主動式增強技術上研究電液動力學(EHD)與壓電風扇等兩種技術。本文主要的內容可分成三個部份,第一個部份以實驗方式研究針狀散熱座於自然對流下之熱傳特性及角度的影響。第二個部份則嘗試結合EHD之散熱模組。第三個部份先以理論與實驗方式研究壓電風扇的振動特性,並以實驗測試其熱傳性能。第一部分的結果發現增加鰭片面積對熱傳面向下時效率較高,對熱傳面垂直擺放時效率較差,此論點可由熱傳增強係數(augmentation factor)看出,熱傳增強係數定義為散熱座與其底部平板總熱傳的比值。此熱傳增強係數在熱傳面向上時為1.1 ~ 2.5,熱傳面垂直時為0.8 ~ 1.8,熱傳面向下時為1.2 ~ 3.2。第二部分的結果發現熱傳增強效果展現於電暈電流大於1μA時,熱傳增強因子(enhancement ratio)隨輸入電能的增加而增加並且正比於電流的1/4次方,熱傳增強因子定義為電暈風作用下與自然對流下平均熱傳係數的比值。理想的無因次電極距離為0.25~0.35,相應之熱傳增強因子為3~5。當電極距離固定時,存在ㄧ最佳電極密度,少於該電極數時,可影響之鰭片面積不足,過多時則發生鄰近電極的流場干擾,減低熱傳效果。第三部分的理論分析採用二維集中質量的模型(2-D lumped mass model)配合可變的流體阻尼,數值結果顯示當不考慮空氣阻尼時,壓電風扇的尖端振幅隨輸入電壓增加線性上升。當考慮空氣阻尼時,振幅的上升漸趨平緩。特別是比對實驗結果後發現,黏膠層的存在額外增加了系統的結構阻尼,進而減小風扇的振幅。在壓電風扇的熱傳性能方面,實驗結果顯示熱傳增強因子隨扇葉振幅的增加而增加,並且隨風扇與散熱座的距離增加而減小,風扇的角度效應也隨此距離的增加而減小。另外壓電風扇與EHD的效果均隨著散熱瓦數的增加而減少,這種現象乃因自然對流的增強所導致。最終本研究的結果除了對延伸表面的自然對流性能有更深入的了解,相信對EHD技術的應用以及壓電風扇的開發設計都有進一步的助益。
Acikalin, T., Garimella, S. V., Petroski, J., and Raman, A. (2004a), Optimal Design of Miniature Piezoelectric Fans for Cooling Light Emitting Diodes, IEEE InterSoc. Conf. Thermal Phenomena, pp. 663-671.
Acikalin, T., Wait, S., Garimella, S. V., and Raman, A. (2004b), Experimental Investigation of the Thermal Performance of Piezoelectric Fans, Heat Transfer Eng., vol. 25, pp. 4-14.
Aihara, T., Maruyama, S., and Kobayakawa, S. (1990), Free Convective/Radiative Heat Transfer from Pin Fin Arrays with a Vertical Base Plate (General Representation of Heat Transfer Performance), Int. J. Heat Mass Transfer, vol. 33, pp. 1223-1232.
Al-Arabi, M. and El-Riedy, M. K. (1976), Natural Convection Heat Transfer from Isothermal Horizontal Plates of Different Shapes, Int. J. Heat Mass Transfer, vol. 19 pp. 1399-1404.
Arik, M., Becker, C., Weaver, S., and Petroski, J. (2004), Thermal Management of LEDs: Package to System, Proc. SPIE, vol. 5187, pp. 64-75.
Arik, M., Petroski, J., and Weaver, S. (2002), Thermal Challenges in the Future Generation Solid State Lighting Applications: Lighting Emitting Diodes, IEEE InterSoc. Conf. Thermal Phenomena, pp. 113-120.
Bejan, A. (1995), Convection Heat Transfer, second ed., Wiley, New York, p. 196.
Bonder, H., and Bastien, F. (1986), Effect of Neutral Fluid Velocity on Direct Conversion from Electrical to Fluid Kinetic Energy in an Electro-fluid-dynamics (EFD) Drive, J Phys D: Appl. Phys., vol. 19, pp. 1657-1663.
Burmann, P., Raman, A., and Garimella, S. V. (2002), Dynamics and Topology Optimization of Piezoelectric Fans, IEEE Trans. Comp. Packag. Technol., vol. 25, pp. 592-600.
Elenbaas, W. (1942), Heat Dissipation of Parallel Plates by Free Convection, Physica, vol. 9, pp. 1-28.
Fisher, T. S. and Torrance, K. E. (1998), Free Convection Limits for Pin-Fin Cooling, J. Heat Transfer, vol. 120, pp. 633-640.
Franke M. E. (1969), Effect of Vortices Induced by Corona Discharge on Free Convection Heat Transfer from a Vertical Plate, J. Heat Transfer, vol. 91, pp. 427-433.
Gu, Y., Narendran, N., and Freyssinier, J. P. (2004), White LED Performance, Proc. SPIE, vol. 5530, pp. 119-124.
Harahap, F., McManus, H. N. Jr. (1967), Natural Convection Heat Transfer from Horizontal Rectangular Fin Arrays, J. Heat Transfer, vol. 89, pp. 32-38.
Hochstein, P. A. (1999), Thermal Management System for LED Arrays, US Patent 5,857,767.
Hochstein, P. A. (2002), LED Thermal Management, US Patent 6,428,189 B1.
Holman, J. P. (1989), Heat Transfer, McGraw-Hill, Singapore, p. 402.
Ihara, A., and Watanabe, H. (1994), On the Flow around Flexible Plates, Oscillating with Large Amplitude, J. Fluids Struct., vol. 8, pp. 601-619.
James, M. L., Smith, G.. M., Wolford, J. C. and Whaley, P. W. (1989), Vibraion of Mechanical and Structure System: with Microcomputer Applications, Harper&Row, New York, p. 204.
Kibler K. G., and Carter Jr H. G.. (1974), Electrocooling in Gases, J. App.l Phys., vol. 45, no. 10, pp. 4436-4440.
Kim, Y. H., Wereley, S. T., and Chun, C. H. (2004), Phase-Resolved Flow Field Produced by a Vibrating Cantilever Plate Between Two Endplates, Phys. Fluids, vol. 16, pp. 145-162.
Kimber, M, Garimella, S. V., and Raman, A. (2007), Local Heat Transfer Coefficients Induced by Piezoelectrically Actuated Vibrating Cantilevers, J. Heat Transfer, vol. 129, pp. 1168-1176.
Kline, S. J. and McClintock, F. A. (1953), Describing Uncertainties in Single-Sample Experiments, Mech. Eng., vol. 75, pp. 3-8.
Kobus, C. J. and Oshio, T. (2005a), Development of a Theoretical Model for Predicting the Thermal Performance Characteristics of a Vertical Pin-Fin Array Heat Sink under Combined Forced and Natural Convection with Impinging Flow, Int. J. Heat Mass Transfer, vol. 48, pp. 1053-1063.
Kobus, C. J. and Oshio, T. (2005b), Predicting the Thermal Performance Characteristics of Staggered Vertical Pin Fin Array Heat Sinks under Combined Mode Radiation and Mixed Convection with Impinging Flow, Int. J. Heat Mass Transfer, vol. 48, pp. 2684-2696.
Kraus, A. D., and Bar-Cohen, A. (1995), Design and Analysis of Heat Sinks, New York, John Wiley and Sons, pp. 273-320.
Mitchell, A. S., and Williams, L. E. (1978), Heat Transfer by the Corona Wind Impinging on a Plate Surface, J. Electrost., vol. 5, pp. 309-324.
Moffat, R. J. (1982), Contributions to the Theory of Single-Sample Uncertainty Analysis, J. Fluids Eng., vol. 104, pp. 250-261.
Narendran, N., Gu, Y., Freyssinier, J. P., Yu, H., and Deng, L. (2004), Solid-State Lighting: Failure Analysis of White LEDs, J. Crystal Growth, vol. 268, pp. 449-456.
Nash, W. A. (1972), Strength of Materials, McGraw-Hill, New York, p. 172.
O’Brien, R. J., and Shine, A. J. (1967), Some Effects of an Electric Field on Heat Transfer from a Vertical Plate in Free Convection, J. Heat Transfer, vol. 89, pp. 114-116.
Opto Technology, Inc., http://www.optotech.com/thermalandelectronics%20pg.htm
Owsenek, B. L., Seyed-Yagoobi, J., and Page, R. H. (1995), Experimental Investigation of Corona Wind Heat Transfer Enhancement with a Heated Horizontal Flat Plate, J. Heat Transfer, vol. 108, pp. 309-315.
Owsenek, B. L., and Seyed-Yagoobi, J. (1997), Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge, J. Heat Transfer, vol. 119, pp. 604-610.
Park, K., Choi, D. H., and Lee, K. S. (2004), Optimum Design of Plate Heat Exchanger with Staggered Pin Fin Arrays, Numer. Heat Transfer A, vol. 45, no. 4, pp. 347-361.
Petroski, J. (2004), Spacing of High-Brightness LEDs on Metal Substrate PCM’s for Proper Thermal Performance, IEEE Intersoc. Conf. Thermal Phenomena, pp. 507-514.
Petroski, J. (2006), Thermal Challenges in LED Cooling, ElectronicsCooling, vol. 12, no. 3, pp. 28-32.
Robinson, M. (1961), Movement of Air in the Electric Wind of the Corona Discharge, Trans. AIEE, vol. 80, pp. 143-150.
Robinson, M. (1962), History of Electric Wind, Am. J. Phys., vol. 30, pp. 366-372.
Schmidt, R. R. (1994), Local and Average Transfer Coefficients on a Vertical Surface Due to Convection form a Piezoelectric Fan, IEEE InterSoc. Conf. Thermal Phenomena, pp. 41-49.
Sikka, K. K., Torrance, K. E., Scholler, C. U., and Salanova, P. I. (2002), Heat Sinks with Fluted and Wavy Plate Fins in Natural Convection and Low-Velocity Forced Convection, IEEE Trans. Comp. Packag. Technol., vol. 25, pp. 283-292.
Smits, J. G.., Dalke, S. I. and Cooney, T. K. (1991), The Constituent Equations of Piezoelectric Bimorphs, Sens. Actuators A, vol. 28, pp. 41-61.
Smits, J. G., and Choi, W. S. (1991), The Constituent Equations of Piezoelectric Heterogeneous Bimorphs, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 38, pp. 256-270.
Sparrow, E. M., and Vemuri, S. B. (1986), Orientation Effects on Natural Convection/ Radiation Heat Transfer from Pin-Fin Arrays, Int. J. Heat Mass Transfer, vol. 29, pp. 359-368.
Starner, K. E., and McManus, H. N. Jr. (1963), An Experimental Investigation of Free Convection Heat Transfer from Rectangular-Fin Arrays, J. Heat Transfer, vol. 85, pp. 273-278.
Stuetzer, O. M. (1959), Ion Drag Pressure Generation, J. Appl. Phys., vol. 30, no. 7, pp. 984-994.
Toda, M., and Osaka, S. (1979), Vibrational Fan Using the Piezoelectric Polymer PVF2, Proc. IEEE, vol. 67, pp. 1171-1173.
Toda, M. (1979), Theory of Air Flow Generation by a Resonant Type PVF2 Bimorph Cantilever Vibrator, Ferroelectrics, vol. 22, pp. 911-918.
Wait, S. M., Basak, S., Garimella S. V. and Raman, A. (2007) Piezoelectric Fans Using Higher Flexural Modes for Electronic Cooling Applications, IEEE Trans. Comp. Packag. Technol, vol. 30, pp. 119-128.
Welling, J. R., and Woolbridge, C. B. (1965), Free Convection Heat Transfer Coefficients from Rectangular Vertical Fins, J. Heat Transfer, vol. 87, pp. 439-444.
Wu, T., Ro, P. I., Kingon, A. I., and Mulling, J. F. (2003), Piezoelectric Resonating Structures for Microelctric Cooling, Smart Mater. Struct., vol. 12, pp. 181-187.
Yao, K. and Uchino, K. (2001), Analysis on a Composite Cantilever Beam Coupling a Piezoelectric Bimorph to an Elastic Blade, Sens. Actuators A, vol. 89, pp. 215-221.
Yoo, J. H., Hong, J. I., and Cao, W. (2000), Piezoelectric Ceramic Bimorph Coupled to Thin Metal Plate Fan as Cooling Fan for Electronic devices, Sens. Actuators A, vol. 79, pp. 8-12.
Yorinaga, M., Markino, D., Kawaguchi, K., and Naito, M. (1985), A Piezoelectric Fan Using PZT Ceramics, Jpn. J. Appl. Phys., vol. 24, Suppl. 24-3, pp. 203-205.
Zografos, A. I., and Sunderland, J. E. (1990), Natural Convection from Pin Fin Arrays, Exp. Thermal and Fluid Sci., vol. 3, pp. 440-449.