簡易檢索 / 詳目顯示

研究生: 姜宇容
Yu-Jung Chiang
論文名稱: 利用脂肪幹細胞承載包覆喜樹鹼之奈米相變液滴作為藥物傳遞載體的可行性研究
Feasibility Study of Adipose-Derived Stem Cell as Vesicles for Delivery of Camptothecin-Loaded Acoustic Nanodroplets
指導教授: 葉秩光
Yeh, Chih-Kuang
口試委員: 李夢麟
張建文
劉浩澧
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 脂肪幹細胞細胞調控藥物傳遞喜樹鹼包覆藥物之奈米相變液滴聲學激發相變液滴汽化腫瘤標靶治療
外文關鍵詞: adipose-derived stem cells, cell-mediated drug delivery, Camptothecin, drug-loaded acoustic nanodroplets, acoustic droplet vaporization, targeted tumor therapy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波調控藥物傳遞的發展,使超音波對比劑不再只作增強影像對比之用,更可視為藥物載體進行治療。相變液滴(Droplets)經由超音波將內部包覆低沸點之液相全氟碳化合物汽化,並轉變成微氣泡之現象稱為acoustic droplet vaporization (ADV)。經由上述汽化過程所引發之震盪,促使液滴殼層破裂,將藥物進行釋放,並同時增強超音波影像之對比。然而近來許多文獻已指出,幹細胞具有腫瘤趨向之特性,故將幹細胞作為奈米藥物載體極具發展的潛力。其中奈米相變液滴(Nanodroplets, NDs)即為一良好奈米載體,但超音波激發奈米相變液滴汽化之聲學閾值,卻會隨著液滴粒徑越小而提升,增加超音波汽化的困難、以及臨床應用的安全性考量。因此本研究藉由包覆藥物之融合式奈米相變液滴(Fusogenic drug-loaded NDs, FNDs),承載於幹細胞後,於細胞體內產生融合特性,改善奈米相變液滴汽化之聲學閾值較高的問題,並達到目標區域藥物釋藥之目的。
    包覆藥物之融合式奈米相變液滴是利用全氟戊烷、喜樹鹼(Camptothecin, CPT)和磷脂質所製備完成,按照特定脂質比例以增加融合性後,即對包覆喜樹鹼之融合式奈米相變液滴(CPT-FNDs)於粒徑變化前後,進行完整的特性量測。接著將CPT-FNDs與脂肪幹細胞(Adipose-derived stem cells, ADSCs)共培養後,進行脂肪幹細胞承載CPT-FNDs之數量、細胞存活率、及細胞移行能力等評估。最後利用2.0-MHz高能聚焦式超音波探頭(3 cycles, 12 MPa)激發承載於脂肪幹細胞中的CPT-FNDs,藉由高速攝影機觀察CPT-FNDs汽化現象和效率。將超音波照射前後之CPT-FNDs與脂肪幹細胞共培養的細胞溶液收集,加入小鼠黑色素瘤細胞細胞株(Melanoma cell, B16-F0)中共培養,量測脂肪幹細胞與腫瘤細胞於0、24小時的細胞活率,以評估激發汽化與釋藥毒殺之效果。
    製備完成之CPT-FNDs其平均粒徑、包覆CPT藥物的能力,分別為381.6 ± 3.5 nm與0.48 mg/mL。於模擬活體體溫環境放置16 h後,CPT-FNDs之粒徑的確具有融合特性,從371.6 ± 3.5 nm增加至1043 ± 28 nm。並隨著粒徑的上升,超音波汽化效率也從22.1 ± 1.9%提升至37.6 ± 2.1%。另外,流式細胞儀的分析結果,可得到脂肪幹細胞承載量隨著加入之CPT-FNDs濃度、與加入之時間增加而提升。其細胞量也可從5.3%提升到97.1%的細胞皆有承載上CPT-FNDs。脂肪幹細胞承載CPT-FNDs後,雖然會造成細胞活性的降低(75.91 ± 5.29%),但卻不顯著影響其細胞移行的能力(移行之細胞數約降低33%)。CPT-FNDs與脂肪幹細胞共培養後,經超音波激發汽化產生的微氣泡,不但具有增強超音波影像對比之能力(47.3 ± 0.5 dB),其汽化過程也伴隨產生35%的細胞殺傷力。此外,經由超音波將脂肪幹細胞承載之CPT-FNDs汽化效率,會隨著CPT-FNDs與細胞共培養的時間增加而降低;但與細胞體內CPT-FNDs之粒徑增加而提升。最後藉著超音波激發細胞承載之CPT-FNDs汽化,綜合物理性ADV效應、以及藥物釋放的化學效應,可以對癌細胞產生69%的毒殺效果。
    結果顯示以脂肪幹細胞承載包覆藥物之融合式奈米相變液滴,作為藥物傳遞載體,於腫瘤局部釋藥上具發展的潛力。未來可將此治療方式實際應用於腫瘤動物模型上,觀察承載CPT-FNDs之脂肪幹細胞於活體中展現腫瘤趨向性,並予以超音波激發汽化,達到局部釋放藥物進行治療之成效。


    目錄 第一章 緒論 1 1.1幹細胞(Stem cell) 1 1.1.1.脂肪幹細胞(Adipose-derived stem cell, ADSC) 1 1.1.2.腫瘤組織與藥物傳遞之關係 2 1.1.3.幹細胞的腫瘤趨向性(Tumor tropism) 3 1.1.4.幹細胞調控藥物傳遞(Stem cell-mediated drug delivery) 4 1.2奈米藥物載體 6 1.2.1.奈米藥物載體之應用 7 1.2.2.奈米載體進入細胞之途徑 8 1.3超音波 11 1.3.1.新式超音波對比劑-相變液滴 12 1.3.2.奈米相變液滴之物理特性 14 1.3.3.具自行融合(Fusogenic)特性之奈米相變液滴 16 1.4喜樹鹼(Camptothecin) 19 1.4.1.包覆藥物之融合式奈米相變液滴 21 1.5研究目的與內容 22 第二章 實驗材料與方法 23 2.1概論….. 23 2.2包覆藥物之融合式奈米相變液滴(CPT-FNDs)的製備 23 2.2.1.光學定性分析 25 2.2.2.物理特性量測 26 2.2.3.藥物包覆量之定量 26 2.2.4.藥物釋放率之量測 27 2.2.5.CPT-FNDs之體外汽化效率量測 28 2.2.5.1.CPT-FNDs於體外汽化之物理特性 29 2.3細胞培養 30 2.3.1.細胞株 30 2.3.1.1.小鼠脂肪幹細胞(Adipose-derived stem cell, ADSC) 30 2.3.1.2.小鼠黑色素瘤細胞細胞株(Mouse melanoma cell) 30 2.3.2.細胞培養液配製 30 2.3.2.1.αMEM細胞培養液 30 2.3.2.2.RPMI細胞培養液 31 2.3.2.3.DMEM細胞培養液 31 2.3.2.4.B16-F0之腫瘤條件培養液(Tumor condition medium) 31 2.3.3.脂肪幹細胞之繼代 32 2.3.4.小鼠黑色素瘤細胞瘤細胞之繼代 32 2.4脂肪幹細胞承載包覆藥物之融合式奈米相變液滴 32 2.4.1.脂肪幹細胞承載CPT-FNDs承載量評估 33 2.4.2.脂肪幹細胞存活率分析 34 2.5超音波激發脂肪幹細胞內CPT-FNDs之汽化評估 36 2.5.1.物理特性 37 2.5.2.超音波影像對比 37 2.6脂肪幹細胞移行能力評估 39 2.7超音波汽化之機械效應對於癌細胞存活率分析 40 2.7.1.超音波汽化之釋藥對於癌細胞的毒殺效果 43 2.8數據分析 44 2.8.1.融合式奈米相變液滴之粒徑、體積分析 44 2.8.2.數據統計 44 第三章 實驗結果與討論 45 3.1.CPT-FNDs製備及其性質量測 45 3.1.1.CPT-FNDs光學定性量測 45 3.1.2.CPT-FNDs粒徑分布 47 3.1.3.CPT-FNDs物理穩定性 50 3.1.4.CPT-FNDs包藥效率及包藥量 52 3.1.5.CPT-FNDs藥物釋放率 54 3.1.6.CPT-FNDs體外汽化效率 56 3.1.7.CPT-FNDs體外汽化之物理特性 57 3.2.脂肪幹細胞承載包覆藥物之融合式奈米相變液滴 59 3.2.1.脂肪幹細胞承載CPT-FNDs之影像 59 3.2.2.脂肪幹細胞承載量之最佳化結果 61 3.2.3.脂肪幹細胞承載時間之最佳化結果 63 3.2.4.承載CPT-FNDs後ADSCs之存活率 65 3.2.5.承載CPT-FNDs後ADSCs之移行能力 68 3.3.超音波激發脂肪幹細胞體內融合式奈米相變液滴汽化並釋藥 70 3.3.1.高速攝影機拍攝光學影像 70 3.3.2.超音波激發脂肪幹細胞內之CPT-FNDs汽化效率 72 3.3.3.聲學影像對比 73 3.3.4.超音波汽化前後B16-F0之存活率 75 3.3.5.毒殺癌細胞之結果 78 第四章 結論與未來展望 81 4.1.結論 81 4.2.未來展望 82 4.2.1.提升融合式奈米相變液滴載藥量 82 4.2.2.降低CPT藥物於製備過程中結塊的情形 83 4.2.3.探討液滴汽化之機械性效應 83 4.2.4.實際應用於腫瘤動物模型 83 參考資料 84

    參考資料
    [1] A. I. Caplan and S. P. Bruder, "Mesenchymal stem cells: building blocks for molecular medicine in the 21st century," Trends Mol Med, vol. 7, pp. 259-64, Jun 2001.
    [2] M. V. Risbud and M. Sittinger, "Tissue engineering: advances in in vitro cartilage generation," Trends Biotechnol, vol. 20, pp. 351-6, Aug 2002.
    [3] W. Liang, H. L. Xia, J. Li, and R. C. Zhao, "Human adipose tissue derived mesenchymal stem cells are resistant to several chemotherapeutic agents," Cytotechnology, vol. 63, pp. 523-530, Oct 2011.
    [4] D. P. Kavanagh, J. Robinson, and N. Kalia, "Mesenchymal Stem Cell Priming: Fine-tuning Adhesion and Function," Stem Cell Rev, Apr 22 2014.
    [5] S. M. Millard and N. M. Fisk, "Mesenchymal stem cells for systemic therapy: shotgun approach or magic bullets?," Bioessays, vol. 35, pp. 173-82, Mar 2013.
    [6] U. Galderisi, A. Giordano, and M. G. Paggi, "The bad and the good of mesenchymal stem cells in cancer: Boosters of tumor growth and vehicles for targeted delivery of anticancer agents," World J Stem Cells, vol. 2, pp. 5-12, Feb 26 2010.
    [7] Z. Gao, L. Zhang, J. Hu, and Y. Sun, "Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles," Nanomedicine, vol. 9, pp. 174-84, Feb 2013.
    [8] A. Sohni and C. M. Verfaillie, "Mesenchymal stem cells migration homing and tracking," Stem Cells Int, vol. 2013, p. 130763, 2013.
    [9] K. Le Blanc and O. Ringden, "Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation," Biol Blood Marrow Transplant, vol. 11, pp. 321-34, May 2005.
    [10] S. J. Baek, S. K. Kang, and J. C. Ra, "In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors," Exp Mol Med, vol. 43, pp. 596-603, Oct 31 2011.
    [11] E. Spaeth, A. Klopp, J. Dembinski, M. Andreeff, and F. Marini, "Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells," Gene Ther, vol. 15, pp. 730-8, May 2008.
    [12] M. Roger, A. Clavreul, M. C. Venier-Julienne, C. Passirani, L. Sindji, P. Schiller, et al., "Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors," Biomaterials, vol. 31, pp. 8393-401, Nov 2010.
    [13] P. M. Chaudhary and I. B. Roninson, "Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells," Cell, vol. 66, pp. 85-94, Jul 12 1991.
    [14] J. H. Gerlach, D. R. Bell, C. Karakousis, H. K. Slocum, N. Kartner, Y. M. Rustum, et al., "P-glycoprotein in human sarcoma: evidence for multidrug resistance," J Clin Oncol, vol. 5, pp. 1452-60, Sep 1987.
    [15] M. Pallis and N. Russell, "P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway," Blood, vol. 95, pp. 2897-2904, May 1 2000.
    [16] M. Pallis and N. H. Russell, "P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukaemia.," British Journal of Haematology, vol. 105, pp. 77-77, Apr 1999.
    [17] X. L. Huang, F. Zhang, H. Wang, G. Niu, K. Y. Choi, M. Swierczewska, et al., "Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery," Biomaterials, vol. 34, pp. 1772-1780, Feb 2013.
    [18] U. Steinfeld, C. Pauli, N. Kaltz, C. Bergemann, and H. H. Lee, "T lymphocytes as potential therapeutic drug carrier for cancer treatment," International Journal of Pharmaceutics, vol. 311, pp. 229-236, Mar 27 2006.
    [19] B. Zarabi, A. Nan, J. Zhuo, R. Gullapalli, and H. Ghandehari, "Macrophage targeted N-(2-hydroxypropyl)methacrylamide conjugates for magnetic resonance imaging," Mol Pharm, vol. 3, pp. 550-7, Sep-Oct 2006.
    [20] L. G. Menon, K. Kelly, H. W. Yang, S. K. Kim, P. M. Black, and R. S. Carroll, "Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy," Stem Cells, vol. 27, pp. 2320-30, Sep 2009.
    [21] A. Nakamizo, F. Marini, T. Amano, A. Khan, M. Studeny, J. Gumin, et al., "Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas," Cancer Res, vol. 65, pp. 3307-18, Apr 15 2005.
    [22] M. Studeny, F. C. Marini, J. L. Dembinski, C. Zompetta, M. Cabreira-Hansen, B. N. Bekele, et al., "Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents," J Natl Cancer Inst, vol. 96, pp. 1593-603, Nov 3 2004.
    [23] A. M. Sonabend, I. V. Ulasov, M. A. Tyler, A. A. Rivera, J. M. Mathis, and M. S. Lesniak, "Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma," Stem Cells, vol. 26, pp. 831-41, Mar 2008.
    [24] M. A. Stoff-Khalili, A. A. Rivera, J. M. Mathis, N. S. Banerjee, A. S. Moon, A. Hess, et al., "Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma," Breast Cancer Research and Treatment, vol. 105, pp. 157-167, Oct 2007.
    [25] H. Cheng, C. J. Kastrup, R. Ramanathan, D. J. Siegwart, M. Ma, S. R. Bogatyrev, et al., "Nanoparticulate cellular patches for cell-mediated tumoritropic delivery," ACS Nano, vol. 4, pp. 625-31, Feb 23 2010.
    [26] M. R. Choi, K. J. Stanton-Maxey, J. K. Stanley, C. S. Levin, R. Bardhan, D. Akin, et al., "A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors," Nano Lett, vol. 7, pp. 3759-65, Dec 2007.
    [27] M. Chokri, M. Lopez, C. Oleron, A. Girard, C. Martinache, S. Canepa, et al., "Production of human macrophages with potent antitumor properties (MAK) by culture of monocytes in the presence of GM-CSF and 1,25-dihydroxy vitamin D3," Anticancer Res, vol. 12, pp. 2257-60, Nov-Dec 1992.
    [28] Y. Ikehara, T. Niwa, L. Biao, S. K. Ikehara, N. Ohashi, T. Kobayashi, et al., "A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle," Cancer Res, vol. 66, pp. 8740-8, Sep 1 2006.
    [29] A. O. El-Sadik, A. El-Ansary, and S. M. Sabry, "Nanoparticle-labeled stem cells: a novel therapeutic vehicle," Clin Pharmacol, vol. 2, pp. 9-16, 2010.
    [30] T. Wang, J. Bai, X. Jiang, and G. U. Nienhaus, "Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry," ACS Nano, vol. 6, pp. 1251-9, Feb 28 2012.
    [31] M. Nassimi, C. Schleh, H. D. Lauenstein, R. Hussein, H. G. Hoymann, W. Koch, et al., "A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung," Eur J Pharm Biopharm, vol. 75, pp. 107-16, Jun 2010.
    [32] D. Napierska, L. C. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, et al., "Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells," Small, vol. 5, pp. 846-53, Apr 2009.
    [33] Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, et al., "Size-dependent cytotoxicity of gold nanoparticles," Small, vol. 3, pp. 1941-9, Nov 2007.
    [34] L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M. C. Hofmann, "In vitro cytotoxicity of nanoparticles in mammalian germline stem cells," Toxicol Sci, vol. 88, pp. 412-9, Dec 2005.
    [35] S. D. Conner and S. L. Schmid, "Regulated portals of entry into the cell," Nature, vol. 422, pp. 37-44, Mar 6 2003.
    [36] L. P. Fernando, P. K. Kandel, J. Yu, J. McNeill, P. C. Ackroyd, and K. A. Christensen, "Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles," Biomacromolecules, vol. 11, pp. 2675-82, Oct 11 2010.
    [37] A. Panariti, G. Miserocchi, and I. Rivolta, "The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions?," Nanotechnol Sci Appl, vol. 5, pp. 87-100, 2012.
    [38] K. Saha, S. T. Kim, B. Yan, O. R. Miranda, F. S. Alfonso, D. Shlosman, et al., "Surface functionality of nanoparticles determines cellular uptake mechanisms in mammalian cells," Small, vol. 9, pp. 300-5, Jan 28 2013.
    [39] L. Treuel, X. Jiang, and G. U. Nienhaus, "New views on cellular uptake and trafficking of manufactured nanoparticles," J R Soc Interface, vol. 10, p. 20120939, May 6 2013.
    [40] K. C. Crowder, M. S. Hughes, J. N. Marsh, A. M. Barbieri, R. W. Fuhrhop, G. M. Lanza, et al., "Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery," Ultrasound Med Biol, vol. 31, pp. 1693-700, Dec 2005.
    [41] I. Gorelikov, A. L. Martin, M. Seo, and N. Matsuura, "Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells," Langmuir, vol. 27, pp. 15024-15033, Dec 20 2011.
    [42] G. M. Lanza, "Targeted Antiproliferative Drug Delivery to Vascular Smooth Muscle Cells With a Magnetic Resonance Imaging Nanoparticle Contrast Agent: Implications for Rational Therapy of Restenosis," Circulation, vol. 106, pp. 2842-2847, 2002.
    [43] K. C. Partlow, G. M. Lanza, and S. A. Wickline, "Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery," Biomaterials, vol. 29, pp. 3367-75, Aug 2008.
    [44] P. M. Winter, K. Cai, S. D. Caruthers, S. A. Wickline, and G. M. Lanza, "Emerging nanomedicine opportunities with perfluorocarbon nanoparticles," Expert Rev Med Devices, vol. 4, pp. 137-45, Mar 2007.
    [45] W. J. Fry, J. W. Barnard, E. J. Fry, R. F. Krumins, and J. F. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science, vol. 122, pp. 517-8, Sep 16 1955.
    [46] W. J. Fry and F. J. Fry, "Fundamental neurological research and human neurosurgery using intense ultrasound," IRE Trans Med Electron, vol. ME-7, pp. 166-81, Jul 1960.
    [47] J. Overgaard, D. G. Gonzalez, M. C. C. H. Hulshof, G. Arcangeli, O. Dahl, O. Mella, et al., "Hyperthermia as an adjuvant to radiation therapy of recurrent or metastatic malignant melanoma. A multicentre randomized trial by the European Society for Hyperthermic Oncology," International Journal of Hyperthermia, vol. 12, pp. 3-20, Jan-Feb 1996.
    [48] S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, "Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound," Am J Obstet Gynecol, vol. 183, pp. 6-11, Jul 2000.
    [49] G. R. ter Haar, "High intensity focused ultrasound for the treatment of tumors," Echocardiography, vol. 18, pp. 317-22, May 2001.
    [50] S. Sirsi, J. Feshitan, J. Kwan, S. Homma, and M. Borden, "Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice," Ultrasound Med Biol, vol. 36, pp. 935-48, Jun 2010.
    [51] R. E. Apfel, "Activatable Infusable Dispersions Containing Drops of a Superheated Liquid for Methods of Therapy and Diagnosis," United States Patent, vol. 5,840,276, 1998.
    [52] G. M. Lanza and S. A. Wickline, "Targeted ultrasonic contrast agents for molecular imaging and therapy," Prog Cardiovasc Dis, vol. 44, pp. 13-31, Jul-Aug 2001.
    [53] E. C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, and R. Zutshi, "Therapeutic applications of lipid-coated microbubbles," Adv Drug Deliv Rev, vol. 56, pp. 1291-314, May 7 2004.
    [54] O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, "Acoustic droplet vaporization for therapeutic and diagnostic applications," Ultrasound Med Biol, vol. 26, pp. 1177-89, Sep 2000.
    [55] W. Lauterborn, T. Kurz, R. Geisler, D. Schanz, and O. Lindau, "Acoustic cavitation, bubble dynamics and sonoluminescence," Ultrason Sonochem, vol. 14, pp. 484-91, Apr 2007.
    [56] F. Xie, M. D. Boska, J. Lof, M. G. Uberti, J. M. Tsutsui, and T. R. Porter, "Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model," Ultrasound Med Biol, vol. 34, pp. 2028-34, Dec 2008.
    [57] N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, "Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles," J Control Release, vol. 138, pp. 268-76, Sep 15 2009.
    [58] M. L. Fabiilli, K. J. Haworth, N. H. Fakhri, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "The role of inertial cavitation in acoustic droplet vaporization," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 56, pp. 1006-17, May 2009.
    [59] A. L. Martin, M. Seo, R. Williams, G. Belayneh, F. S. Foster, and N. Matsuura, "Intracellular growth of nanoscale perfluorocarbon droplets for enhanced ultrasound-induced phase-change conversion," Ultrasound Med Biol, vol. 38, pp. 1799-810, Oct 2012.
    [60] N. Reznik, O. Shpak, E. C. Gelderblom, R. Williams, N. de Jong, M. Versluis, et al., "The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets," Ultrasonics, vol. 53, pp. 1368-76, Sep 2013.
    [61] P. M. Kasson and V. S. Pande, "Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics," PLoS Comput Biol, vol. 3, p. e220, Nov 2007.
    [62] S. J. Lee, P. H. Schlesinger, S. A. Wickline, G. M. Lanza, and N. A. Baker, "Simulation of fusion-mediated nanoemulsion interactions with model lipid bilayers," Soft Matter, vol. 8, pp. 3024-3035, Jan 1 2012.
    [63] D. E. Lee, M. G. Lew, and D. J. Woodbury, "Vesicle fusion to planar membranes is enhanced by cholesterol and low temperature," Chem Phys Lipids, vol. 166, pp. 45-54, Jan 2013.
    [64] B. Venegas, M. R. Wolfson, P. H. Cooke, and P. L. Chong, "High vapor pressure perfluorocarbons cause vesicle fusion and changes in membrane packing," Biophys J, vol. 95, pp. 4737-47, Nov 15 2008.
    [65] J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, "Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells," Ultrasonics, vol. 49, pp. 39-46, Jan 2009.
    [66] A. Hatefi and B. Amsden, "Camptothecin delivery methods," Pharm Res, vol. 19, pp. 1389-99, Oct 2002.
    [67] Z. R. Huang, S. C. Hua, Y. L. Yang, and J. Y. Fang, "Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion," Acta Pharmacol Sin, vol. 29, pp. 1094-102, Sep 2008.
    [68] B. D. Chithrani, A. A. Ghazani, and W. C. Chan, "Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells," Nano Lett, vol. 6, pp. 662-8, Apr 2006.
    [69] S. M. Sugarman, Y. Zou, K. Wasan, K. Poirot, R. Kumi, S. Reddy, et al., "Lipid-complexed camptothecin: formulation and initial biodistribution and antitumor activity studies," Cancer Chemother Pharmacol, vol. 37, pp. 531-8, 1996.
    [70] K. H. Min, K. Park, Y. S. Kim, S. M. Bae, S. Lee, H. G. Jo, et al., "Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy," J Control Release, vol. 127, pp. 208-18, May 8 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE