研究生: |
楊竣傑 Yang, Jun-Jie |
---|---|
論文名稱: |
開發新型鍛造型高熵超合金 Development of Innovative Wrought High-Entropy Superalloys |
指導教授: |
蔡哲瑋
Tsai, Che-Wei |
口試委員: |
葉均蔚
Yeh, Jien-Wei 陳育良 Chen, Yu-Liang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 175 |
中文關鍵詞: | 高熵合金 、超合金 、合金設計 、微結構 、機械性質 |
外文關鍵詞: | High-entropy alloy, Superalloy, Alloy design, Microstructure, Mechanical properties |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於高熵合金特殊的性質,是近年重點研究的領域。其中,高熵超合金在高溫下能有更好的熱穩定性與更突出的機械性質。本研究首先探討Nb添加對於抗氧化性與機械性質提升之效益,並進一步使用Al-Co-Cr-Fe-Ni-Ti-Nb高熵合金系統,進行後續開發與研究。
本研究利用新式高熵合金設計觀念,有效率的設計高熵合金。搭配相模擬預測,控制Co、Cr、Fe三種基地相主要元素之比例,設計出僅有γ與γ' 雙相之高熵超合金,並採取高含量的Fe添加,使得合金更具成本優勢;藉由冷滾軋與快速退火製程,結果顯示晶粒尺寸為30~50 μm,γ' 為50 nm左右,為最佳的分佈與析出尺寸。本研究之最佳成份與熱處理製程,在室溫拉伸降伏強度與抗拉強度達1162 MPa與1480 MPa,延伸率有22.4%;而後調整Al-Ti比進一步提升其機械性質,並與最常見之商用超合金Inconel 718進行綜合比較,研究結果顯示新型高熵超合金,在700°C以上溫度機械性質能有更優異的表現,且擁有低密度與優異的性價比,有潛力成為下一代高溫合金。
High-entropy superalloys (HESAs) is a well-known field in HEA metallic materials. HESAs have outstanding thermal stabilities and mechanical properties due to its unique effects at elevated temperature. In this research, the oxidation resistance and mechanical properties are improved with Nb addition in Al-Co-Cr-Fe-Ni-Ti-Nb high-entropy alloys. After that, this system was used further to develop and desinge for new type HESAs.
The innovative high-entropy alloys design strategy is set up to adjust the complex multicomponent more efficiently. Using the CALPHAD to predict the phase composition, the amounts of Co, Cr, and Fe were adjusted to get FCC HESAs with only γ matrix and γ' precipitates. The present HESAs had a cost advantage because of the high content of Fe. After cold rolling and rapid annealing process, the grain size was between 30 and 50 μm. The γ' precipitates are the size of 50 nm which is opimal distribution and precipitation size by the lterature. The yield strength and the ultimate tensile strength of present alloy was 1162 MPa and 1480 MPa with the elongation of 22.4%.
Besides, the mechanical properties are further improved by adjusting the Al-Ti ratio. Finally, comparing with commercial superalloy “Inconel 718” above 700°C, it showed that the high temperature mechanical properties of HESAs in this research are shown better performance than Inconel 718.
The present HESAs are with advantage of the lower density than Incnonal 718 and outstanding cost-performance ratio. The development of innovative Al-Co-Cr-Fe-Ni-Ti-Nb HESAs has the potential for the next generation of wrought superalloys.
1. Reed, R.C., The superalloys: fundamentals and applications. 2008: Cambridge university press.
2. Yeh, J.W., et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
3. 李名言, 鎳基合金材質特性介紹. 中工高雄會刊, 2013. 第21卷.
4. 葉哲政, 鎳基合金市場現況與應用商機. 中工高雄會刊, 2013. 第21卷.
5. Pelloux, R. and N. Grant, SOLID SOLUTIONS AND SECOND PHASE STRENGTHENING OF NICKEL ALLOYS AT HIGH AND LOW TEMPERATURES. 1959, Massachusetts Inst. of Tech., Cambridge. Dept. of Metallurgy.
6. He, J.Y., et al., A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Materialia, 2016. 102: p. 187-196.
7. Bhadeshia, H.K.D.H. Nickel Based Superalloys. 2019.04.01; Available from: http://www.phase-trans.msm.cam.ac.uk/2003/Superalloys/superalloys.html.
8. Gleiter, H., E.J.M.s. Hornbogen, and engineering, Precipitation hardening by coherent particles. 1968. 2(6): p. 285-302.
9. Nabarro, F.R. and M.S. Duesbery, Dislocations in solids. Vol. 11. 2002: Elsevier.
10. Mouritz, A.P., Introduction to aerospace materials. 2012: Elsevier.
11. Yang, T., et al., Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. 2018. 362(6417): p. 933-937.
12. Pickering, F.J.I.S.R., Precipitation processes in steels. 1959(64): p. 23.
13. Sullivan, C. and M. Donachie Jr, MICROSTRUCTURES AND MECHANICAL PROPERTIES OF IRON-BASE (-CONTAINING) SUPERALLOYS. 1971, United Aircraft Corp., East Harford, Conn.
14. Chamanfar, A., et al., Evolution of flow stress and microstructure during isothermal compression of Waspaloy. 2014. 615: p. 497-510.
15. Tinga, T., et al., Cube slip and non-Schmid effects in single crystal Ni-base superalloys. 2009. 18(1): p. 015005.
16. Xu, M., et al., Experimental study on the correlation between intermediate temperature embrittlement and equi-cohesive temperature. Journal of Alloys and Compounds, 2014. 610: p. 288-293.
17. 齊歡, INCONEL 718 (GH4169) 高溫合金的發展與工藝. 材料工程, 2012. 2012年8期.
18. Korth, G. and C. Trybus, Tensile properties and microstructure of Alloy 718 thermally aged to 50,000 h. 1991, EG and G Idaho, Inc., Idaho Falls, ID (USA).
19. High Temp Metals, I., INCONEL 718 TECHNICAL DATA.
20. Liang, X., et al., The structure and mechanical properties of alloy 718 DA disk on hammer. 1994. 7(1): p. 8.
21. Cao, W. and R.J.S. Kennedy, Role of chemistry in 718-type alloys–Allvac® 718Plus™ alloy development. 2004: p. 91-99.
22. Liu, X., et al., Fatigue crack propagation behaviors of new developed Allvac® 718PlusTM superalloy. 2004: p. 283-290.
23. Manzoni, A., et al., On the path to optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti high entropy alloy family for high temperature applications. 2016. 18(4): p. 104.
24. Yeh, J.W., Recent progress in high-entropy alloys. Annales De Chimie-Science Des Materiaux, 2006. 31(6): p. 633-648.
25. Yeh, J.-W., et al., Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. 2004. 35(8): p. 2533-2536.
26. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. 2005. 36(4): p. 881-893.
27. Ranganathan, S.J.C.s., Alloyed pleasures: multimetallic cocktails. 2003. 85(5): p. 1404-1406.
28. Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
29. Pickering, E.J. and N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects. International Materials Reviews, 2016. 61(3): p. 183-202.
30. Wang, Z., et al., Design of high entropy alloys based on the experience from commercial superalloys. 2015. 95(1): p. 1-6.
31. Yeh, A., et al., Developing new type of high temperature alloys–High Entropy Superalloys. 2015. 2015.
32. Chen, J., et al., A review on fundamental of high entropy alloys with promising high–temperature properties. 2018.
33. Manzoni, A.M., et al., Influence of W, Mo and Ti trace elements on the phase separation in Al8Co17Cr17Cu8Fe17Ni33 based high entropy alloy. 2015. 159: p. 265-271.
34. Wang, Z.G., et al., Effect of coherent L1(2) nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2017. 696: p. 503-510.
35. Gwalani, B., et al., Stability of ordered L1(2) and B-2 precipitates in face centered cubic based high entropy alloys - Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scripta Materialia, 2016. 123: p. 130-134.
36. Daoud, H.M., et al., High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy). Jom, 2015. 67(10): p. 2271-2277.
37. Tsao, T.K., et al., On The Superior High Temperature Hardness of Precipitation Strengthened High Entropy Ni-Based Alloys. Advanced Engineering Materials, 2017. 19(1).
38. Yeh, A.C., et al., On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2014. 45A(1): p. 184-190.
39. Tsao, T.K., A.C. Yeh, and H. Murakami, The Microstructure Stability of Precipitation Strengthened Medium to High Entropy Superalloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2017. 48A(5): p. 2435-2442.
40. Chang, Y.J. and A.C. Yeh, The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys. Journal of Alloys and Compounds, 2015. 653: p. 379-385.
41. Yang, T., et al., Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018. 362(6417): p. 933-+.
42. Chuang, M.H., et al., Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia, 2011. 59(16): p. 6308-6317.
43. 郭家銘, 非等莫耳AlCoCrFeNiTi高熵合金微結構及機械性質之研究. 國立清華大學材料科學工程研究所, 2017: p. 60頁.
44. Weng, F., et al., Fabrication of Ni-based superalloys containing Nb and their high temperature oxidation behaviors. 2015. 30(11): p. 1364-1369.
45. Cruchley, S., et al., Chromia layer growth on a Ni-based superalloy: sub-parabolic kinetics and the role of titanium. 2013. 75: p. 58-66.
46. Blacklocks, A.N., et al., An XAS study of the defect structure of Ti-doped α-Cr2O3. 2006. 177(33-34): p. 2939-2944.
47. Pedrazzini, S., et al., On the effect of Ti on Oxidation Behaviour of a Polycrystalline Nickel-based Superalloy. 2018.
48. Taylor, M., et al., The oxidation characteristics of the nickel-based superalloy, RR1000, at temperatures of 700–900 C. 2012. 29(2): p. 145-150.
49. Antonov, S., M. Detrois, and S. Tin, Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2018. 49A(1): p. 305-320.
50. Ming, K.S., X.F. Bi, and J. Wang, Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates. International Journal of Plasticity, 2018. 100: p. 177-191.
51. Zhao, Y.L., et al., Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Materialia, 2017. 138: p. 72-82.
52. Abbaschian, R. and R.E. Reed-Hill, Physical metallurgy principles. 2008: Cengage Learning.
53. Ceschini, L., et al., MICROSTRUCTURAL REFINEMENT AND SUPERPLASTICITY OF IN-718 SUPERALLOY. Journal De Physique Iv, 1993. 3(C7): p. 335-338.