簡易檢索 / 詳目顯示

研究生: 洪揚哲
Yang-Che Hung
論文名稱: 表面處理改善有機太陽能電池載子的淬取效率
Improve organic solar cells carriers extraction efficiency by surface treatment
指導教授: 李明昌
Ming-Chang Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 63
中文關鍵詞: 自組裝單分子層表面電偶極矩載子淬取
外文關鍵詞: SAM, surface dipole, carrier extraction
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討在電極層表面加入HMDS或OTS自組裝單分子層(Self-Assembly Monolayer, SAM)對有機太陽能電池的影響。因為SAM為雙極性分子,親水性的一端與ITO電極鍵結而露出疏水性的一端於表面,達到表面改質的功能,使得pentacene成膜於ITO基板上結晶更明顯、缺陷更少。SAM形成的同時,也產生電偶極矩於ITO與pentacene界面,此電場方向由pentacene指向ITO,恰與在pentacene中傳遞的電洞流方向相同,因而有助於電洞的淬取。我們以ITO/SAM/pentacene/C60/BCP/Mg:Ag 有機太陽能電池結構驗證SAM對有機太陽能電池效率上的影響,在2.5個太陽光強下有做ITO表面處理元件之Voc=0.441±0.001 V、Jsc=23.87±0.29 mA/cm2、Pmax=2.977±0.040 mW/cm2、η=1.19±0.01%、FF=28.27±0.08%,比起不做表面處理者效率提升18.1%。


    At this research study, we evaluate the performance of organic solar cells by adding a HMDS or OTS-based self-assembly-monolayer (SAM) on the ITO electrodes. Because HMDS and OTS are amphiphilic molecules, the hydrophilic end preferably bonds with ITO molecules whereas the hydrophobic end links to the pentacene, the host material of solar cells. Two positive effects were observed due to this surface treatment. First, deposited pentacene on the electrode surface had large grain size and less defects. Second, amphiphilic SAM can induce surface dipoles at the interface between ITO and pentacene, where the polarization direction is equivalent to the hole-current direction. It results in better hole extraction from the host materials. To verify the effect, we fabricated solar cells with a layer structure of ITO/SAM/pentacene/C60/BCP/Mg: Ag. Exposed to 2.5 times suns luminance, the SAM-coated solar cells was measured with parameters of Voc=0.441±0.001 V, Jsc=23.87±0.29 mA/cm2,Pmax=2.977±0.040 mW/cm2,η=1.19±0.01%, and FF=28.27±0.08%. The overall performance was improved by 18.1%, compared with the cells without the SAM.

    中文摘要............................................................I 英文摘要...........................................................II 誌謝..............................................................III 目錄...............................................................IV 第一章 緒論............................................................................................................1 1-1 前言.................................................................................................................1 1-1.1 能源.....................................................................................................1 1-1.2 太陽電池.............................................................................................1 1-1.3 太陽能電池種類.................................................................................2 1-2 研究動機與目的.............................................................................................5 第二章 理論背景....................................................................................................7 2-1 太陽輻射........................................................................................................7 2-2 有機太陽能電池基本原理............................................................................8 2-2.1 分子軌域與能帶................................................................................8 2-2.2 比較有機與無機太陽能電池材料..................................................10 2-2.3 有機太陽能電池工作原理與元件結構..........................................13 2-3 有機太陽能電池之光電特性......................................................................17 2-4 空間電荷限制電流(Space Charge Limited Current, SCLC)...........19 2-5 Pentacene 薄膜特性...................................................................................22 第三章 實驗方法與步驟......................................................................................24 3-1 結構設計及材料特性..................................................................................24 3-1.1 pentacene (施體) 之材料特性....................................................24 3-1.2 C60 、PCBM (受體) 之材料特性....................................................25 3-1.3 BCP (Exciton Blocking Layer, EBL) 之材料特性..................26 3-2 蒸鍍原理.......................................................................................................28 3-3 有機太陽電池製作流程..............................................................................29 3-3.1 ITO 玻璃之清洗...............................................................................30 3-3.2 ITO 玻璃的圖形定義......................................................................31 3-3.3 電池元件之成長..............................................................................32 3-4 ITO 玻璃基板的表面處理...........................................................................33 3-5 實驗量測設備..............................................................................................36 3-5.1 薄膜表面量測..................................................................................36 3-5.2 光學性質量測..................................................................................37 3-5.3 電性量測..........................................................................................38 第四章 結果與討論..............................................................................................40 V 4-1 pentacene 成膜機制分析...........................................................................40 4-1.1 pentacene XRD 分析.......................................................................40 4-1.2 pentacene 薄膜表面型態分析.......................................................44 4-2 pentacene 薄膜與ITO 界面的電偶極矩對等效載子移動率之影響.......46 4-3 混合製程元件..............................................................................................49 4-4 電偶極矩對元件效率的影響......................................................................53 4-5 比較不同材料、製程之有機太陽能電池..................................................58 第五章 結論與未來展望......................................................................................60 參考文獻......................................................................................................................61

    1. 國內太陽能光電發展可期,工業材料雜誌 (2003)
    2. 全球再生能源發展概況,能源季刊,第30 卷,第四期,p84~93 (2000)
    3. 經濟部能源局
    4. 太陽能電池—21 世紀的新能源,科學新天地 (2004)
    5. M. Gratzel,Nature 414, p338~344 (2001)
    6. 結晶矽太陽能電池發展現況,工業材料雜誌 (2003 年11 月)
    7. 薄膜太陽能電池發展近況,工業材料雜誌 (2003 年11 月)
    8. 高分子太陽能電池技術,工業材料雜誌 (2003 年11 月)
    9. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H.
    Friend, S. C. Moratti ,and A. B. Holmes, Nature 376, p498~500(1995)
    10. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science
    270 ,p1789-1791(1995)
    11. 太陽能工程-太陽能電池篇,裝嘉琛
    12. 光電有機電激發光顯示器技術及應用,顧鴻濤
    13. Optoelectronics of molecules and polymers, André Moliton
    14. semiconductor physics and devices, Neamen
    15. electronic processes in organic crystals and polymers, Pope, Swenberg
    16. solar cells: materials, manufacture and operation, Tom Markvart, Luis
    Castañer
    17. Peter Peumans, Aharon Yakimov, and S. R. Forrest, J. Appl. Phys.93,
    p3693~3723 (2003)
    18. F. Yang, M. Shtein, and S. R. Forrest, Nature materials 4, p37~41
    (2005)
    19. B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A.
    Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer,
    H. Hoppe, D. Meissner, N. S. Sraiciftci, I. Riedel, V. Dyakonov, J.
    Parisi, Appl. Phys. A 79, p1~14 (2004)
    62
    20. A. Yakimov, S. R. Forrest, Appl. Phys. Lett. 80, p1667~1669 (2002)
    21. G. Li, V. Shrotriya, J. Huang, Y. YAO, T. Moriarty, K. EMERY ,and Y.
    YANG, Nature Materials 4, p864~868 (2005)
    22. W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. J. Milliron, and A.
    P. Alivisatos, Phys. Rev. B 67 115326 (2003)
    23. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz,
    M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater. 11,
    p374~380 (2001)
    24. I.P.M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth, T.M. Klapwijk,
    Synthetic Metals 104, p175~178 (1999)
    25. 有機薄膜電晶體之載子移動率與微結構關係,電子與材料雜誌 第27 期,
    p18~P27
    26. Oana D. Jurchescu, Jacob Baas, and Thomas T. M. Palstra, Appl. Phys.
    Lett. 84,p3061~p3063 (2004)
    27. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett.
    85, p5757~5759 (2004)
    28. P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, p126 (2001)
    29. S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett.
    84, p4218~4220 (2004)
    30. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S.
    R. Forrest, Phys. Rev. B 54, p13748~13758 (1996)
    31. S. C. Lim, S. H. kim, J. H. Lee, M. K. Kim, D. J. Kim, T. Zyung,
    Synthetic Metals 148, p75-79 (2005)
    32. 微電灑晶片之設計與製作,機械工業 269 期
    33. M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys.
    Lett. 81, p268~270 (2002)
    34. 有機薄膜電晶體微結構分析技術開發,電子與材料雜誌 27, p28~33
    35. 材料分析,汪建民
    36. C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, J. Appl. Phys. 80,
    p2501~2508 (1996)
    63
    37. J. K. Lee, J. M. Koo, S. Y. Lee, T. Y. Choi, J. Joo, J. Y. Kim, J.
    H. Choi, Optical Materials 21, p451~454 (2002)
    38. G. Jarosz, R. Signerski, J. Godlewski, Thin Solid Films 396, p196~200
    (2001)
    39. S. J. Kang, M. Noh, D. S. Park, H. J. Kim, and C. N. Wang, J. Appl.
    Phys. 95, p2293~2296 (2004)
    40. N. G. Park, M. Y. Kwak, B. O. Kim, O. K. Kwon, Y. K. Kim, B. You, T.
    W. Kim, and Y. S. Kim, Jap. J. Appl. Phys. 41, p1523~1526 (2002)
    41. H. Hoppe, M. Niggermann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch,
    D. Meissner, and N. S. Sariciftci, Adv. Funct. Mater. 14, p1005~1011
    (2004)
    42. H. Hoppe, T. Glatzel, M. Niggermann, A. Hinsch, M. Ch. Lux-Steniner,
    and N. S. Sariciftci, Nano Letters 5, p269~274 (2005)
    43. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, V. Wittwer, Thin
    Solid Films 451-452, p619~623 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE