簡易檢索 / 詳目顯示

研究生: 吳俊德
Wu, Chun-Te
論文名稱: Properties of heterojunctions-high TC cuprates superconducting p-n junction and super-Schottky diode of Fe-based superconductor
異質接面之性質-高溫銅氧化合物之超導正負接面和鐵基超導體之超-肖特基二極體
指導教授: 吳茂昆
Wu, Maw-Kuen
口試委員: 王明杰
陳洋元
齊正中
陳正中
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 130
中文關鍵詞: 正負接面超-肖特基二極體鐵基超導體釔鋇銅氧釹鈰銅氧
外文關鍵詞: p-n junction, super-Schottky diode, Fe-based superconductor, YBCO, NCCO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • We report the fabrication and the properties of YBa2Cu3O7-δ (YBCO)/Nd1.85Ce0.15CuO4-δ (NCCO) high temperature superconducting p-n junction on (100) SrTiO3 substrate. The bilayer thin films were c-axis oriented and both layers are superconducting. The superconducting p-n junction shows a resistive-shunted-junction (RSJ) like characteristics with extremely low critical current density, ~6.5 . Shapiro steps were observed under microwave irradiation. Atomically sharp interface was observed by high resolution tunneling electron microscope (HRTEM). The geometric phase analysis (GPA) of the HRTEM image was applied to study the local variation of lattice parameters of YBCO and NCCO near the interface. Furthermore, the junction reveals a strongly aging effect, attributed to the inter-diffusion of oxygen at the YBCO and NCCO interface. We demonstrate that oxygen diffusion at the interface is a possible origin for the barrier formation. On the other hand, we also report the fabrication of epitaxial heterojunctions formed by the FeSe0.5Te0.5 (FeSeTe) superconductor and Nb-doped SrTiO3 (NSTO) semiconducting substrate and their properties. At high temperature when FeSeTe is in its normal state, the forward bias curves behave like a Metal-Semiconductor junction with a low Schottky barrier. Direct tunneling through the thin depletion layer of the junction dominates the reverse bias curves. When FeSeTe film becomes superconducting at low temperature, we observed that the Schottky barrier height of the junction increased but was suppressed by an external magnetic field. This deviation provides an estimate of the superconducting energy gap of the FeSeTe film is about 2.06 meV. A dip associated with information about superconducting energy gap has been observed from differential conductance characteristics at low temperatures. We build a Superconductor/Semiconductor tunneling theory to fit the experimental curve and theoretical curve then extract energy gap from fitting results.


    Contents Abstract …………………………………………………………………………………………….i Acknowledgement…………………………………………………………………………………iii Contents iv List of Figures vii List of Tables xi 1. Introduction ………………………………………………………………………………..1 2. Theoretical background 2.1 Background knowledge…………………………………………………………………...7 2.1.1 Overview of high temperature superconductivity………………………………..7 2.1.2 Electron versus hole doping of the cuprates……………………………………...9 2.1.3 The discovery of iron-based superconductors…………………………………..14 2.1.4 Doped and reduced strontium titanate…………………………………………..17 2.2 Theory of Josephson junction……………………………………………………………20 2.2.1 Josephson tunneling……………………………………………………………..20 2.2.2 The RCSJ model………………………………………………………………...22 2.2.3 The ac Josephson effect (Shapiro steps)………………………………………...26 2.2.4 The dc Josephson effect (Fraunhofer pattern)…………………………………..28 2.2.4.1 Small junction ………………………………………………………...28 2.2.4.2 Large junction…………………………………………………………32 2.3 Metal-Semiconductor junction…………………………………………………………..34 2.3.1 Origins of barrier height………………………………………………………...34 2.3.2 Current transport processes……………………………………………………..38 2.4 Tunneling theory…………………………………………………………………………40 2.4.1 NIN junction…………………………………………………………………….40 2.4.2 NIS junction……………………………………………………………………..42 2.4.3 Superconductor-Semiconductor junction……………………………………….44 2.5 Transmission coefficient…………………………………………………………………48 2.5.1 Exact solution of Schrödinger equation………………………………………...48 2.5.2 Transfer matrix of a single barrier………………………………………………50 2.5.3 Transmission coefficient………………………………………………………...52 3. Experimental Details 3.1 Pulsed laser deposition…………………………………………………………………..55 3.2 Target synthesis………………………………………………………………………….56 3.3 Thin film deposition …………………………………………………………………….56 3.4 Thin film characterization……………………………………………………………….58 3.5 Transport measurement………………………………………………………………….58 4. Results and discussions-high TC cuprates superconducting p-n junction 4.1 X-ray diffraction pattern…………………………………………………………………61 4.2 Resistance versus temperature (R-T) curve……………………………………………...64 4.3 Current-Voltage (I-V) characteristic at 4.2 K…………………………………………….67 4.4 AC Josephson effect (Shapiro steps)…………………………………………………….69 4.5 DC Josephson effect (Fraunhofer pattern)……………………………………………....69 4.6 The analysis of p-n junction interface using TEM……………………………………....73 4.7 Aging effect ……………………………………………………………………………..81 4.8 Summary………………………………………………………………………………....83 5. Results and discussions-super-Schottky diode of Fe-based superconductor 5.1 X-ray diffraction pattern………………………………………………………………..84 5.2 Resistivity versus temperature (R-T) curve……………………………………………..84 5.3 Current-Voltage (I-V) characteristics above TC…………………………………………86 5.4 Schottky barrier height and ideality factor……………………………………………...88 5.5 Current-Voltage (I-V) characteristics below TC……………………………………….....92 5.6 Differential conductance (dI/dV-V) curve at low temperatures………………………….96 5.6.1 Experimental results…………………………………………………………….96 5.6.2 Simulation results……………………………………………………………….99 5.6.2.1 Transmission coefficient……………………………………………..100 5.6.2.2 Four parameters of , , and ………………………….....103 5.6.2.3 Broadening factor…………………………………………………....105 5.6.2.4 Fitting data under low bias voltage at 4.2 K…………………………108 5.7 Summary………………………………………………………………………………..115 6. Conclusion…………………………………………………………………………………116 References ……………………………………………………………………………………...120

    References
    [1] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    [2] M. Peressi, N. Binggeli, and A. Baldereschi, J. Phys. D 31, 1273 (1998).

    [3] K. Ueda, H. Tabata, and T. Kawai, Science 280, 1064 (1998).

    [4] A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419, 378 (2002).

    [5] A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).

    [6] J. L. Freeouf, T. N. Jackson, S. E. Laux, and J. M. Woodall, Appl. Phys. Lett. 40, 634 (1982).

    [7] E. Dobrocka and J. Osvald, Appl. Phys. Lett. 65, 575 (1994).

    [8] V. E. Henrich and P. A. Cox, The Surface Sience of Metal Oxides (Cambridge University Press,
    New York, 1994).

    [9] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    [10] H. Tanaka, J. Zhang, T. Kawai, Phys. Rev. Lett. 88, 27204 (2002).

    [11] C. Mitra, P. Raychaudhuri, G. Kobernik, K. Dorr, K. H. Muller, L. Schultz, R. Pinot, Appl. Phys. Lett. 79, 2408 (2001).

    [12] J. Zhang, H. Tanaka, T. Kawai, Appl. Phys. Lett. 80, 4378 (2002).

    [13] F. X. Hu, J. Gao, J. R. Sun, B. G. Shen, Appl. Phys. Lett. 83, 1869 (2002).

    [14] A. Tiwari, C. Jin, D. Kumar, J. Narayan, Appl. Phys. Lett. 83, 1773 (2003).

    [15] J. R. Sun, C. M. Xiong, T. Y. Zhao, S. Y. Zhang, Y. F. Chen, and B. G. Shen, Appl. Phys. Lett. 84, 2611 (2004).

    [16] J. R. Sun, C. H. Lai, and H. K. Wong, Appl. Phys. Lett. 85, 73 (2004).

    [17] C. Ren, J. Trbovic, P. Xiong, and S. Von Molnar, Appl. Phys. Lett. 86, 012501 (2005).

    [18] P. Xiong and G. Xiao, Phys. Rev. Lett. 71, 1907 (1993).

    [19] Y. Yamada and M. Suzuki, Phys. Rev. B 66, 132507 (2002).

    [20] J. W. Ekin, S. E. Russek, C. C. Clickner, and B. Jeanneret, Appl. Phys. Lett. 62, 369 (1993).

    [21] R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Muler, Phys. Rev. Lett. 68, 2394 (1992).

    [22] N. Kim, H. J. Lee, J. J. Kim, J. O. Lee, J. W. Park, K. H. Yoo, S. Lee, and K. W. Park, Solid state commun, 115, 29 (2000).

    [23] A. W. Kleinsasser, T. N. Javkson, D. Mclnturff, F. Rammo, G. D. Pettit, and J. M. Woodall, Appl. Phys. Lett. 57, 1811 (1990).

    [24] A. Yamamoto, A. Sawa, H. Akoh, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 90, 112104 (2007).

    [25] Y. W. Xie, J. R. Sun, D. J. Wang, S. Liang, W. M. Lu, and B. G. Shen, Appl. Phys. Lett. 90, 192903 (2007).

    [26] A.Yoshida, H. Tamura, K. Gootoh, H. Takauchi, and S. Hasuo, J. Appl. Phys. 70, 4976 (1991).

    [27] F. M. Postma, R. Ramaneti, T. Banerjee, H. Gokcan, E. Haq, D. H. A. Blank, R. Jansen, and J.
    C. Lodder, J. Appl. Phys. 95, 7324 (2004).

    [28] J. R. Sun, C. M. Xiong, Y. Z. Zhang, and B. G. Shen, Appl. Phys. Lett. 87, 222501 (2005).

    [29] Y. Muraoka, T. Muramatsu, J. Yamaura, and Z. Hiroi, Appl. Phys. Lett. 85, 2950 (2004).

    [30] M. N. Keene, T. J. Jackson, and C. E. Gough, Nature 340, 210 (1989).

    [31] R. Gross, P. Chaudhari, A. Gupta, and G. Koren, Physica C 166, 277 (1990).

    [32] H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).

    [33] S. J. Hagen, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. B 43, 13606 (1991).

    [34] S. N. Mao, X. X. Xi, S. Bhattacharya, Qi Li, T. Venkatesan, J. L. Peng, R. L. Greene, J. Mao,
    d. H. Wu, and S. Anlage, Appl. Phys. Lett. 61, 2356 (1992).
    [35] A. Kussmaul, J. S. Modera, P. M. Tedrow, and A. Gupta, Appl. Phys. Lett. 61, 2715 (1992).

    [36] J. L. Peng, E. Maiser, T. Venkatesan, R. L. Greene, and G. Czjzek, Phys. Rev. B 55, R6145 (1997).

    [37] J. Mannhart, A. Kleinsasser, J. Strobel, and A. Baratoff, Physica C 216, 401 (1993).

    [38] M. J. Wang, J.Y. Luo, T.W. Huang, H. H. Chang, T. K. Chen, F. C. Hsu, C. T. Wu, P. M. Wu, A. M. Chang, and M. K. Wu, Phys. Rev. Lett. 103, 117002 (2009).

    [39] M. K. Wu, F. C. Hsu, K. W. Yeh, T. W. Huang, J. Y. Luo, M. J. Wang, H. H. Chang, T. K. Chen, S. M. Rao, B. H. Mok, C. L. Chen, Y. L. Huang, C. T. Ke, P. M. Wu, A. M. Chang, C. T. Wu, and T. P. Perng, Physica C. 469, 340 (2009).

    [40] W. Si, Z-W Lin, Q. Jie, W-G Yin, J. Zhou, G. Gu, P. D. Johnson, and Q. Li, Appl. Phys. Lett. 95, 052504 (2009).

    [41] Y. F. Nie, E. Brahimi, J. I. Budnick, W. A. Hines, M. Jain, and B. O. Wells, Appl. Phys. Lett. 94, 242505 (2009).

    [42] Y. Han, W.Y. Li, L.X. Cao, S. Zhang, B. Xu, and B R Zhao, J. Phys.: Condens. Matter 21, 235702 (2009).

    [43] W. Ramadan, S. B. Ogale, S. Dhar, L. F. Fu, S. R. Shinde, Darshan C. Kundaliya, M. S. R. Rao, and N. D. Browning, Phys. Rev. B 72, 205333 (2005).

    [44] F. X. Hu, J. Gao, J. R. Sun, and B. G. Shen, Phys. Lett. 83, 1869 (2003).

    [45] H. K. Onnes, Leiden comm. 120b, 122c, 124c (1911).

    [46] W. Meissner and R. Oschenfeld, Naturwiss. 21, 787 (1933).

    [47] H. London and F. London, Proc, Roy. Soc. A149, 71 (1935).

    [48] V. L. Ginzburg and L. D. Landau, Zh.Eksp. Teor. Fiz., 20, 1064 (1950).

    [49] H. Frohlich, Phys. Rev. 79, 845 (1950).

    [50] E. Maxwell, Phys. Rev. 78, 477 (1950).
    [51] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    [52] J. G. Bedonorz and K. A. MAuller, Z. Phys. B 64, 189 (1986).

    [53] M. K. Wu, J. R. Ashburn, C. J. Torng, P. Hor, R. L. Meng, L. Gao, Z. J. Hung,Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).

    [54] H. Maeda, Y. Tanaka, and M. Fukutomi, Jpn. J. Appl. Phys. 27, L209 (1988).

    [55] Z. Z. Sheng, A. M. Hermann, A. El Ali, C. Almasan, J. Estrada, T. Datta, and R. J. Matson, Phys. Rev. Lett. 60, 937 (1988).

    [56] S. N. Putilin, E. V. Antipov, and O. Chmaissem, Nature 362, 226 (1993).

    [57] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, and C. W. Chu,
    Phys. Rev. B 50, 4260 (1994).

    [58] Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 345(1989).

    [59] N. P. Ong, Physical Properties of High Temperature Superconductors, ed. D. M. Ginsberg, World Scientific, Singapore Vol. 2, 459 (1990).

    [60] A. Damascelli, Z. Hussain, and Z. X. Shen, Rev. Mod. Phys. 75, 473, (2003).

    [61] M. R. Norman and C. Pepin, Rep. Prog. Phys. 66, 1547 (2003).

    [62] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473, (2003).

    [63] Y. Tokura, A. Fujimori, H. Matsubara, H. Watabe, H. Takagi, S. Uchida,M. Sakai, H. Ikeda,
    S. Okuda, and S. Tanaka, Phys. Rev. B 39, 9704 (1989).

    [64] Y. Kohsaka, M. Azuma, I Yamada, T. Sasagawa, T. Hanaguri, M. Takano, and H. Takagi,
    J. Am. Chem. Soc. 124, 12275 (2002).

    [65] Y. Ando, A. N. Lavrov, and K. Segawa, Phys. Rev. Lett. 83, 2813 (1999).

    [66] M. Francois, E. Walker, and J. L. Jorda, Solid State Commun. 63, 1149 (1987).

    [67] K. Conder. Mat. Sci. and Eng., R32, 41-102 (2001).
    [68] Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi,
    Toshio Kamiya, and Hideo Hosono, J. Am. Chem. Soc. 128, 10012 (2008).

    [69] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and Hideo Hosono, J. Am. Chem. Soc.
    130, 3296 (2008).

    [70] H. Takahashi, K. Igawa, K.Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature 453, 376
    (2008).

    [71] X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, Nature 453, 761 (2008).

    [72] G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo, and N. L. Wang,
    Phys.Rev. Lett. 100, 247002 (2008).

    [73] Zhi-An Ren, Jie Yang, Wei Lu, Wei Yi, Xiao-Li Shen, Zheng-Cai Li, Guang-Can Che, Xiao-Li
    Dong, Li-Ling Sun, Fang Zhou, and Zhong-Xian Zhao, Europhys. Lett. 82, 57002 (2008).

    [74] Ren Zhi-An, Lu Wei, Yang Jie, YI Wei, Shen Xiao-Li, Li Zheng-Cai, Che Guang-Can, Dong
    Xiao-Li, Sun Li-Ling, Zhou Fang, and Zhao Zhong-Xian, Chin. Phys. Lett. 25, 2215 (2008).

    [75] R. H. Liu, G. Wu, T. Wu, D. F. Fang, H. Chen, S. Y. Li, K. Liu, Y. L. Xie, X. F. Wang,
    R. L. Yang, L. Ding, C. He, D. L. Feng, and X. H. Chen, Phys. Rev. Lett. 101, 087001 (2008).

    [76] J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z.
    Fang, and N. L. Wang, Europhys. Lett. 83, 27006 (2008).

    [77] B. Lorenz, K. Sasmal, R.P. Chaudhury, X.H. Chen, R.H. Liu, T. Wu, and C.W. Chu, Phys. Rev. B 78, 012505 (2008).

    [78] Jun Zhao, Q. Huang, Clarina De La Cruz, Shiliang Li, J. W. Lynn, Y. Chen, M. A. Green, G. F. Chen, G. Li, Z. Li, J. L. Luo, N. L. Wang, and Pengcheng Dai, Nature Mat. 7, 953 (2008).

    [79] H. Chen, Y. Ren, Y. Qiu, Wei Bao, R. H. Liu, G. Wu, T. Wu, Y. L. Xie, X. F. Wang, Q.
    Huang and X. H. Chen, Europhys. Lett. 85, 17006 (2009).

    [80] M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008).

    [81] J. H. Tapp, Z.J. Tang, B. Lv, K. Sasmal, B. Lorenz, C.W. Chu, and A.M. Guloy, Phys. Rev. B
    78, 060505(R) (2008).
    [82] F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y.Chu, D.C. Yan, and M.K. Wu, Proc. Natl. Acad. Sci. USA 105, 14262 (2008).

    [83] P. M. Aswathy, J. B. Anooja, P. M. Saurn, and U. Syamaprasad, Supercond. Sci. Technol. 23,
    073001 (2010).

    [84] T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J.
    Allred, A. J. Williams,D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 014522 (2009).

    [85] K.W. Yeh, H.C. Hsu, T.W. Huang, P.M. Wu, Y.L. Huang, T.K. Chen, J.Y. Luo, and M.K. Wu,
    J. Phys. Soc. Jpn. Phys. 77, Suppl. C, 19 (2008).

    [86] K.W. Yeh, T.W. Huang, Y.L. Huang, T.K. Chen, F.C. Hsu, P.M. Wu, Y.C. Lee, Y.Y. Chu, C.L. Chen, J.Y. Luo, D.C. Yan, and M.K. Wu., Europhys. Lett. 84, 37002 (2008).

    [87] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Appl. Phys. Lett. 93,
    152505 (2008).

    [88] D. J. Singh and M.-H. Du, Phys. Rev. Lett 100, 237003 (2008).

    [89] Alaska Subedi, Lijun Zhang, D.J. Singh, and M.H. Du, Phys. Rev. B 78, 134514 (2008).

    [90] R. Khasanov, K. Conder, E. Pomjakushina, A. Amato, C. Baines, Z. Bukowski, J. Karpinski, S. Katrych, H.-H. Klauss, and H. Luetkens, Phys. Rev. B 78, 220510 (2008).

    [91] H. Kotegawa, S. Masaki, Y. Awai, H. Tou, Y. Mizuguchi, and Y. Takano, J. Phys. Soc. Jpn. 77, 113703 (2008).

    [92] T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, Phys. Rev. Lett. 102, 177005
    (2009).

    [93] T. M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y. S. Hor, J.
    Allred, A. J. Williams,D. Qu, J. Checkelsky, N. P. Ong, and R. J. Cava, Phys. Rev. B 79,
    014522 (2009).

    [94] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T.
    Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506 (2009).

    [95] N. Shanthi and D. D. Sarma, Phys. Rev. B 57, 2153 (1998).

    [96] A. Yoshida, H. Tamura, K. Gotoh, H. Takauchi, and S. Hasuo, J. Appl. Phys. 70, 4976 (1991).

    [97] K. A. Muller and H. Burkard, Phys. Rev. B 19, 3593 (1979).

    [98] M. A. Saifi and L. E. Cross, Phys. Rev. B 2, 677 (1970).

    [99] H.-M. Christen, J. Mannhart, E. J. Williams and Ch. Gerber, Phys. Rev. B 49, 12095, (1994).

    [100] T. Higuchi, T. Tsukamoto, K. Kobayashi, y. Ishiwata, M. Fujisawa, T. Yokoya, S. Yamaguchi,
    S. Shin, Phys. Rev. B 61, 12860 (2000).

    [101] K. Szot, W. Speier, R. Carius, U. Zastrow and W. Beyer, Phys. Rev. Lett. 88, 075508 (2002).

    [102] O. N.Tufte and P.W. Chapman, Phys. Rev. 155, 796 (1967).

    [103] J. F. Schooley, W. R. Hosler, and M. L. Cohen, Phys. Rev. Lett. 12, 474 (1964).

    [104] E. R. Pfeiffer and J. F. Schooley, Phys. Lett. 29A, 589 (1969).

    [105] C. S. Koonce, M. L. Cohen, J. F. Schooley, W. R. Hosler, and E. R. Pfeiffer, Phys. Rev. 163, 380 (1967).

    [106] J. F. Schooley, W. R. Hosler, E. Ambler, J. H. Becker, M. L. Cohen and C. S. Koonce,
    Phys. Rev. Lett. 14, 305 (1965).

    [107] Y. Takada, J. Phys. Soc. Jpn. 49, 1267 (1980).

    [108] J. K. Hulm, M. Ashkin, D. W. Deis, and C. K. Jones, Prog. Low. Temp. Phys. 6, 205 (1970).

    [109] B. D. Josephson, Phys. Lett. 1, 251 (1962).

    [110] R. Feynmen, “Lectures on Physics” Chapter 21Vol. III, P 12-14~P12-18, (1965).

    [111] D. E. McCumber, J. Appl. Phys. 39, 3113 (1968).

    [112] W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).

    [113] C. P. Poole, H. A. Farach, and R. J. Creswick, Superconductivity, United Kingdom Edition
    published by Academic Press Limited, (1995).

    [114] M.Abramowitz and I. a. Stegun (Eds.) Handbook of Mathematical Functions. Washington, DC: National Bureau of Standards, U.S. Government Printing Office, (1964).

    [115] S. Shapiro, Phys. Rev. Lett. 11, 80 (1963).

    [116] T. Van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits, Oxford Univ. Press, New York, p184 (1981).

    [117] A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, JOHN WILEY &SONS, (1982).

    [118] T. P. Orlando and K. A. Delin, Foundations of Applied Superconductivity, Addison-Wesley
    Publishing Company, (1991).

    [119] B. L. Sharma, Metal Semiconductor Schottky Barrier Junction and Their Applications, (Plenum, New York, 1984).

    [120] W. Schottky, Naturwissenschaften 26, 843 (1938).

    [121] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd edn (Oxford: Clarendon 1988).

    [122] T. Van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits, Oxford Univ. Press, New York (1981).

    [123] E. L. Wolf, Principles of Electron Tunneling Spectroscopy, Oxford Univ. Press, New York (1985).

    [124] A. W. Kleinsasser, T. N. Jackson, D. McInfurt, F. Rammo, G. D. Pettit, and J. M. Woodall, Appl. Phys. Lett. 57, 1811 (1990).

    [125] B. J. Van Wees, P. de Vries, P. Magnee, and T. M. Klapwijk, Phys. Rev. Lett. 69, 510 (1992).

    [126] A. K. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 3rd. Ed., New Delhi; McMillan, (1984).

    [127] A. Casher and F. Englert, Class. Quantum Grav. 10, 2479 (1993).

    [128] D. S. Chemla and A. Pinczuk, Eds. IEEE J. Quantum Electron., Special Issue on Semiconductor Quantum Wells and Superlattices; Physics and Applications, QE-22, (1986).

    [129] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, N. Y, (1995).

    [130] R. Tsu, and L. Easki, Appl. Phys. Lett. 22, 562 (1973).

    [131] S. Vatannin, and G. Gildenblat, IEEE J. Quantum Electron, 32, 1093 (1996).

    [132] A. K. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Application, 3rd. Ed., New Delhi; McMillan, 1984.

    [133] J. D. Love, and C. Winkler, J. Opt. Soc. Am. 67, 1627 (1977).

    [134] A. K. Ghatak, R. L. Gallawa, and I. C. Gayal, IEEE J. Quantum Electron. 28, 400 (1992).

    [135] A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, IEEE J. Quantum Electron. 24, 1524 (1988).

    [136] A. M. Lane, and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).

    [137] D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films, JOHN WILEY&
    SONS, (1994).

    [138] E. Maiser, P. Fournier, J. L. Peng, F. M. Araujo-Moreira, T. Venkatesan, R. L. Greene, and G. Czjzek, Physica C 297, 15 (1998).

    [139] B.D. Cullity and S.R. Stock, Elements of X-ray diffraction (Prentice Hall, 3rd edition, 2001).

    [140] S. N. Mao, X. X. Xi, Qi Li, I. Takeuchi, S. Bhattacharya, C. Kwon, C. Doughty, A.
    Walkenhorst, T. Venkatesan, C. B. Whan, J. L. Peng, and R. L. Greene, Appl. Phys. Lett. 62, 2425 (1993).

    [141] I. Takeuchi, S. N. Mao, X. X. Xi, K. Petersen, C. J. Lobb, and T. Venkatesan, Appl. Phys. Lett. 67, 2872 (1995).

    [142] H. Haensel, A. Beck, F. Gollnik, R. Gross, R. P. Huebener, and K. Knorr, Physica C 244, 389 (1995).

    [143] C.S. Owen and D.J. Scalapino, Phys. Rev. 164, 538 (1967).

    [144] K. Schwidtal, Phys. Rev. B 2, 2526 (1970).

    [145] A. Mathai, Y. Gim, R. C. Black, A. Amar, and F. C. Wellstood, Phys. Rev. Lett. 70, 85 (1993).

    [146] D. H. Wu, J. Mao, S. N. Mao, J. L. Peng, X. X. Xi, T. Venkatesan, R. L. Greene, Phys. Rev.
    Lett. 74, 4523 (1995).

    [147] S. Kashiwaya, L. Alff, H. Takashima, N. Terada, T. Ito, K. Oka, Y. Tanaka, M. Koyanagi, S. Ueno, and K. Kajimura, Physica C, 282-287, 1477 (1997).

    [148] L. Raffo, F. Licci, and A. Migliori, Phys. Rev. B 48, 1192 (1993).

    [149] J. Ye, and K. Nakamura, Phys. Rev. B 48, 7554 (1993).

    [150] P. Benzi, E. Bottizzo, and N. Rizzi, J. Cryst. Growth 269, 625 (2004).

    [151] R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 73, 180505 (2006).

    [152] Y. Kuru, M. Usman, G. Cristiani, and H. U. Habermeier, J. Cryst. Growth 312, 2904 (2010).

    [153] M. Vlcek, and L. Bebes, Czech. J. Phys. 43, 575 (1993).

    [154] J. L. MacManus-Driscoll, Adv. Funct. Mater. 20, 2035 (2010).

    [155] R. Beyers, B. T. Ahn, G. Gorman, V. Y. Lee, S. S. P. Parkin, M. L. Ramirez, K. P. Roche,
    J. E. Vazquez, T. M. Gur, and R. A. Huggins, Nature 340, 619 (1989).

    [156] Q. H. Hu, K.Stiller, E. Olsson, H. O. Andren, P. Berastegui, and G. Johansson,
    Physica C 235-240, 431 (1994).

    [157] J. C. Phillips, Phil. Mag. B 82, 783 (2002).

    [158] J. C. Barry, and J. A. Alarco, J. Microsc, 202, 495 (2001).

    [159] P. G. DE Gennes, Superconductivity of Metals and Alloys, W. A. Benjamin, Inc, (1966).

    [160] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi and Y. Takano, J. Phys. Soc. Jpn. 78, 074712 (2009).

    [161] M. J. Wang, J.Y. Luo, T.W. Huang, H. H. Chang, T. K. Chen, F. C. Hsu, C. T. Wu, P. M. Wu, A. M. Chang, and M. K. Wu, Phys. Rev. Lett. 103, 117002 (2009).

    [162] T. Higuchi, T. Tsukamoto, K. Kobayashi, y. Ishiwata, M. Fujisawa, T. Yokoya,
    S. Yamaguchi, S. Shin, Phys. Rev. B 61, 12860 (2000).

    [163] T. Fujii, M Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura, Phys. Rev. B 75, 165101 (2007).

    [164] Y. Cui, Solid State Commun. 147, 350 (2008).

    [165] T. Shimizu, N. Gotoh, N. Shinozaki, and H. Okushi, Appl. Surf. Sci. 117-118, 400 (1997).

    [166] T. Shimizu and H. Okushi, J. Appl. Phys. 85, 7244 (1999).

    [167] F. M. Postma, R. Ramaneti, T. Banerjee, H. Gokcan, E. Haq, D. H. A. Blank, R. Jansen, and J. C. Lodder, J. Appl. Phys. 95, 7324 (2004).

    [168] G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).

    [169] T. Kato, Y. Mizuguchi, H. Nakamura, T. Machida, H. Sakata, and Y. Takano, Phys. Rev. B 80, 180507 (2009).

    [170] T. Hanaguri, S. Niitaka, K. Kuroki, and H. Takagi, Science 328, 474 (2010).

    [171] H. Suzuki, M. Iyori, T. Yamamoto, S. Suzuki, K. Takahashi, T. Usuki, and Y. Yoshisato,
    Jpn. J. Appl. Phys. Vol. 31, 2716 (1992).

    [172] H. Hasegawa, T. Fukazawa, and T. Aida, Jpn. J. Appl. Phys. Vol.28, L2210 (1989).

    [173] R. C. Dynes, J. P. Garno, G. B. Hertel, and T. P. Orlando, Phys. Rev. Lett. 53, 2437 (1984).

    [174] J. R. Kirtley, S. Washburn, and D. J. Scalapino, Phys. Rev. B 45, 336 (1992).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE