簡易檢索 / 詳目顯示

研究生: 金怡君
Jin, Yi Chun
論文名稱: 應用於鋰離子電池之錳系高工作電壓尖晶石正極材料與高電容量富鋰層狀氧化物之合成機制、結構分析與電化學性能探討
Development of Manganese-Based High Voltage Spinel and High Capacity Li-rich Layered Oxides for Improving Rate Capability as High Performance Cathode Materials in Lithium Ion Battery
指導教授: 杜正恭
Duh, Jenq Gong
口試委員: 吳志明
呂承璋
楊昌中
詹益瑞
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 272
中文關鍵詞: 鋰離子電池正極材料高伏尖晶石高電容富鋰層狀氧化物锂鎳錳氧快速充放電
外文關鍵詞: lithium ion battery, cathode material, high voltage spinel, high capacity Li-rich layered oxide, manganese-based, rate capability
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於電動車市場之崛起與多功能可攜式電子產品之大幅進展,鋰離子電池的性能和需求與日俱增。其中,正極材料之發展尤其為一大關鍵,而高安全性、高輸出功率,與高能量密度電池皆為現今正極材料之必要條件與主流開發方向。因此,本研究針對高伏尖晶石之LiNi0.5Mn1.5O4-ϭ與富鋰層狀結構之xLi2MnO3·yLiNiaMnbO2等正極材料進行深入探討。
    於尖晶石LiNi0.5Mn1.5O4開發方面,此博士論文延續本人之碩士期間的成果,探討晶格氧非計量比與粉體顆粒大小對於其電化學性能之影響,並針對高/低溫性能與對應之鋰離子擴散係數作詳細之探討,發現較高的氧非計量比與較小的顆粒大小具有較好的低溫性能與快速充放電能力,但在長圈數的高溫循環下卻會有顯著的電容量損耗,歸因於較高的錳溶出現象所導致。進一步研究指出,可藉由調整充放電電壓高於4 V來抑制此不良反應。另外,使用電化學阻抗量測並結合循環伏安分析法,證明LiNi0.5Mn1.5O4-ϭ之鋰離子擴散係數隨操作溫度呈指數變化,且不同充放電電位對其傳輸性能有劇烈影響,並發現操作溫度約為300K為本材料之鋰離子傳輸能力的關鍵,其牽涉Li/ LiNi0.5Mn1.5O4-ϭ系統中活化能的轉換。本研究亦開發出新型合成正極材料方法,可大幅提升尖晶石材料之粉體結晶性並增進快速充放電性能。
    於富鋰層狀之正極材料開發方面,本研究首先針對其複雜結構與元素組成著手,經由系統性的分析與實驗探討,找出最適化複合成分為0.5Li2MnO3·0.5LiNi0.5Mn0.5O2,其具有完好的結晶性且無任何雜相殘留。本研究藉由引進有機溶劑製程法,可進一步控制粉體之合成形貌,製備出具有類似花狀之細微結構,此外,本製程亦可大幅抑制粉體表面碳酸鋰的覆蓋量,避免對富鋰正極材料之充放電性能造成負面影響,與傳統製程之顆粒狀粉體比較,發現前者具有較優異之電化學性能,在高速率放電下還可維持高電容量輸出,歸功於較低的藉面阻抗與較高的鋰離子擴散係數。
    最後,本研究開發出新型之高分子氟化法,藉由前述有機溶劑製程方式,可一次性的製備出複合型正極粉體材料,其結合高伏尖晶石LiNi0.5Mn1.5O4-ϭ與富鋰層狀正極材料xLi2MnO3·yLiNiaMnbO2,目標為汲取前者之快速充放電與後者之高電容量等優點,可望進一步增進電池整體之功率輸出與能量密度。本技術相較其他合成方法相對簡易、快速、低耗能、降低成本,並具有可控制粉體形貌之優勢,此外,還可有效地達成更優異的電性表現,預期可應用於未來高功能性之鋰離子電池中。


    Growing universal demands for alternative fuels and renewable energy sources have simulated the advancement of lithium-ion batteries, especially for the development of EVs. Breakthroughs in cathode materials are of the most demand to reach high power and energy density for future Li-ion batteries. The electrochemical performance depends on the morphological and compositional characteristics of the electrode materials, which could be optimized through controlling a variety of synthetic parameters. For future EVs usage, manganese based oxides are considered the most appreciable cathode materials with low cost and environmental benefits, yet still meet great challenges for pursuing high performances in Li-ion batteries. This dissertation aims to investigate ways to improve the rate capability of manganese based cathodes with three different structures: spinel, layered, and mixed spinel-layered phases.
    Chapter 1 provides a history of lithium ion batteries, introduces some generalities and basic knowledge for electrochemical storages. Then, given an overview of the prototype cathode materials and its derivatives. It finally concluded that low cost and environmental-friendly manganese based oxides are much preferable for future EVs usage.
    Chapter 2 gives a comprehensive literature review for three types of manganese based positive materials: high voltage spinel LiNi0.5Mn1.5O4-ϭ, high capacity Li-rich layered oxides yLi2MnO3∙xLiNiaMnbO2, and novel spinel-layered composites. The corresponded critical issues and main challenges are thoughtfully discussed. The aim of this study is also given in the end of this chapter, which is projected to pursuit high rate capability of cathode materials for achieving high power densities in lithium ion batteries.
    Chapter 3 describes the synthetic processes used in this dissertation for obtaining subjected cathode materials. Various analytic methods and operation parameters are provided for identifying as-fabricated positive electrodes. Here, three evolutionary type of manganese based oxides with spinel, layered and spinel-layered mixed structures are designed, in which each material system is prepared via its corresponded fabrication method explained in each chapter.
    Chapter 4 and 5 are devoted to the development of high voltage spinel LiNi0.5Mn1.5O4-ϭ cathode materials. The research in chapter 4 is a straight continuation of my M.S. thesis. Two key controlling factors, oxygen non-stoichiometry and particle sizes, are intensively explored for high voltage spinel cathodes and represented significant influences on electrochemical properties. In a detail examination, the profound correlations are found in these two factors associating to temperature durability of spinel cathodes. The EIS and CV techniques are proven very useful for studying the dependences of Li-ion diffusivity and the activation energy in electrochemical system of Li/ LiNi0.5Mn1.5O4-ϭ during temperature changes. A solvent-controlled co-precipitation method was introduced in chapter 5 for preparing a purified spinel cathode material with excellent rate performances. It reveals a well-dispersity and easy incorporation of various polymeric additives, which further contributes to my following research works.
    Chapter 6 presents the evolution of complex composition and the architecture control of Li-rich layered oxides (LLOs). Based on theoretical and experimental investigations, the attainable compositions of LLOs were systematic evaluated. It finally concluded a most preferable composition of LLOs cathode material 0.5Li2MnO3∙0.5LiNi0.5Mn0.5O2 with high-crystallinity and without any undesired impurities. Moreover, the morphologically-tailored LLOs was successfully achieved via the inspiration of solvent-controlled synthetic method in chapter 5. It is favorable for accomplishing a good rate capability at relative high discharging rates.
    Chapter 7 focuses on the development of spinel-layered composites (LLS) as a novel hybrid cathode material for lithium ion battery. A new strategy for achieving LLS material is implemented via particular fluoridations. The approach for evaluating relative spinel phases and the underlying mechanism of layer to spinel transformation is carefully addressed. In the end of this chapter, all of as-fabricated cathodes in this dissertation are compared with their rate capability at room temperature. As a result, a superior electrochemical performances of LLS cathodes are clearly highlighted. It successfully combines the high capacity Li-rich layered yLi2MnO3∙xLiNiaMnbO2 with the high voltage spinel LiNi0.5Mn1.5O4-ϭ to accomplish a complex composite cathode material with a generalized formula “yLi2MnO3∙xLiNiaMnbO2∙yLiNi0.5Mn1.5O4-ϭ”. It is greatly expected for the potential usage of high performance lithium ion batteries in future HEV/EVs.

    Background 16 Chapter 1 Introduction 20 1.1 Lithium Ion Battery 20 1.1.1 Overview and Current Scope 22 1.1.2 A Brief History 25 1.1.3 Why Lithium 27 1.1.4 Basic Working Principles 28 1.1.5 Important Parameters and Related Electrochemistry 30 1.2 Cathode Materials 38 1.2.1 History 39 1.2.2 Layered Structure ― LiCoO2 41 1.2.3 Olivine Structure ― LiFePO4 43 1.2.4 Spinel Structure ― LiMn2O4 45 1.3 Other Cathode Candidates 50 1.3.1 Derivatives of Spinel LiMn2O4 50 1.3.2 Derivatives of Layered LiCoO2 54 1.3.3 Solid Solution and Layered-Layered Composite 57 1.4 Future Scopes and Key Challenges 61 Chapter 2 Literature Review 64 2.1 High Voltage Spinel 64 2.2 Li-rich Layered Oxides 72 2.3 Layered-Spinel Composite 90 2.4 Overview and Key Challenges 94 Aims of This Work 98 Chapter 3 Experimental Procedures 102 3.1 Material Synthesis 102 3.1.1 Oxalate Decomposition Synthesis 102 3.1.2 Solvent-controlled Co-Precipitation Synthesis 102 3.1.3 Polymer-Assisting Process 103 3.1.4 Polymeric Fluoridation Process 104 3.1.5 Two-Stage Calcination 104 3.2 Material Characterization 105 3.2.1 X-ray Diffraction 105 3.2.2 Scanning Electron Microscopy 105 3.2.3 Compositional Analysis 106 3.2.4 Infrared Spectroscopy 106 3.2.5 Thermogravimetric Analysis 106 3.3 Electrochemical measurements 107 3.3.1 Electrode Preparation 107 3.3.2 Coin Cell Assembly 108 3.3.3 Electrochemical Testing 109 Results and Discussions 110 Chapter 4 Factors in Determining the Electrochemical Performances of High Voltage Spinel LiNi0.5Mn1.5O4 Cathode Materials 110 4.1 Control of Oxygen Non-Stoichiometry 110 4.2 Effects of Oxygen Non-Stoichiometry on Temperature Durability 127 4.3 Control of Particle Size 153 4.4 Effects of Particle size on Temperature Durability 159 4.5 Summary 167 Chapter 5 Special Issues in Developing Synthetic Method of High Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material 169 5.1 Introduction 169 5.2 Synthetic Procedures 171 5.3 Results and Discussion 173 5.4 Summary 186 Chapter 6 The Development of Li-rich Layered Oxide as High Energy Cathode Materials for Lithium Ion Battery 187 6.1 Evolution of Composition in Li-rich Layered Oxides 187 6.2 Evolution of Synthesis Method in Li-rich Layered Oxides 195 6.3 Summary 212 Chapter 7 A Facile Fluoridation Method for Synthesizing Spinel-Layered Composites as Novel Cathode Materials 214 7.1 Introduction 214 7.2 Material Synthesis and Characterizations 217 7.3 Investigation of Electrochemical Properties 228 7.4 Summary 234 Chapter 8 Conclusion 236 Chapter 9 References 239

    1. BP. Statistical Review of World Energy; 2015.
    2. David Timmons, J. M. H., and Brian Roach. The Economics of Renewable Energy. Global Development And Environment Institute, Tufts University: 2014.
    3. BP. World energy consumption by source, Statistical Review of World Energy; 2014.
    4. Boden, T. A., Marland, G., and Andres R.J. Global, Regional, and National Fossil-Fuel CO2 Emissions. 2015.
    5. Masaki Yoshio, R. J. B., Akiya Kozawa,. lithium ion batteries: Science and technologies. Springer 2009.
    6. V, S. Batteries for vehicular applications. AIP conference proceedings, physics of sustainable energy, Berkeley, CA 2008, 1044, 283-296.
    7. Lawrence Burns, B. M., and Christopher Borroni. Vehicle of Change. Scientific American 2010, 287 (4).
    8. Chen, H.; Cong, T. N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Progress in Natural Science 2009, 19 (3), 291-312.
    9. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-67.
    10. Tarascon, J. M. Key challenges in future Li-battery research. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 2010, 368 (1923), 3227-41.
    11. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451 (7179), 652-7.
    12. Akridge J, B. R. Li-ion markets; Pacific power symposium, Waikoloa, HI, 2010.
    13. Lusk, M. M. W. Environmental Assessment for Exide Technologies Electric Drive Vehicle Battery and Component Manufacturing Initiative Application, Bristol, TN, and Columbus, GA; U.S. Department of Energy (DOE): 2010.
    14. darden, B. Battery manufacturers and Brand Names; 2002.
    15. A.A. Pesaran, T. M., H.S. Tataria, and D. Howell. Battery Requirements for Plug-In Hybrid Electric Vehicles -Analysis and Rationale 23rd International Electric Vehicle Symposium, Anaheim, California, 2009.
    16. Nelson, R. F. Power requirements for batteries in hybrid electric vehicles. J Power Sources 2000, 91 (1), 2-26.
    17. Pesaran, A. A. Choices and Requirements of Batteries for EVs, HEVs, PHEVs; National Renewable Energy Laboratory, 2011.
    18. Jankowski, N. R.; McCluskey, F. P. A review of phase change materials for vehicle component thermal buffering. Applied Energy 2014, 113, 1525-1561.
    19. Dell RM, R. D. Understanding Batteries. RSC paperbacks, Cambridge: Royal Society of Chemistry: 2001; Vol. 1st Edition, p 264.
    20. I, A. Asimov's Biographical Encyclopedia of Science and Technology. Garden City: Doubleday & Company: 1982.
    21. I, B. Batteries in A Portable World: A Handbook on Rechargeable Batteries for Non-engineers. New York: Cadex Electronics Inc: 2001; Vol. 2nd Edition.
    22. Scrosati, B. The present status of battery technology. Renewable Energy 1994, 5 (1-4), 285-294.
    23. Loeffler, N.; Bresser, D.; Passerini, S. Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities. Johnson Matthey Technology Review 2015, 59 (1), 34-44.
    24. H. Ikeda, K. N., H. Nakashim. 1981.
    25. Scrosati, B. Recent advances in lithium ion battery materials. Electrochim Acta 2000, 45 (15-16), 2461-2466.
    26. Masaki Yoshio, R. J. B., Akiya Kozawa. Lithium-Ion Batteries: Science and Technologies. Springer Science & Business Media: 2010.
    27. Hjelm, A.-K.; Eriksson, T.; Lindbergh, G. Electrochemical investigation of LiMn2O4 cathodes in gel electrolyte at various temperatures. Electrochim Acta 2002, 48 (2), 171-179.
    28. Ozawa, K. Lithium Ion Rechargeable Batteries: Materials, Technology, and New Applications. John Wiley & Sons: 2012.
    29. David L, T. B. Handbook of Batteries. McGraw-Hill: New York, London, 2002; Vol. 3rd Edition.
    30. Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries†. Chem Mater 2010, 22 (3), 587-603.
    31. Muraliganth, A. M. a. T. Lithium Intercalation Cathode Materials for Lithium-Ion Batteries. Wiley-VCH Verlag GmbH & Co. KGaA: 2011; p 341-375.
    32. Findlay, G. A. a. T. SI Chemical Data. John Wiley & Sons: Australia, 2008; Vol. 6th edition.
    33. Peled, E. An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries. J Electrochem Soc 1998, 145 (10), 3482.
    34. Thomas, M.; Bruce, P.; Goodenough, J. AC impedance of the Li(1−x)CoO2 electrode. Solid State Ionics 1986, 18-19, 794-798.
    35. Huggins, R. A.; Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 2000, 6 (1-2), 57-63.
    36. Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J Power Sources 2006, 162 (2), 1379-1394.
    37. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews 2014, 114 (23), 11503-618.
    38. Li, C.; Zhang, H. P.; Fu, L. J.; Liu, H.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q. Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 2006, 51 (19), 3872-3883.
    39. Ji, Y.; Zhang, Y.; Wang, C. Y. Li-Ion Cell Operation at Low Temperatures. J Electrochem Soc 2013, 160 (4), A636-A649.
    40. Luan, X.; Guan, D.; Wang, Y. Enhancing High-Rate and Elevated-Temperature Performances of Nano-Sized and Micron-Sized LiMn<SUB>2</SUB>O<SUB>4</SUB> in Lithium-Ion Batteries with Ultrathin Surface Coatings. J Nanosci Nanotechno 2012, 12 (9), 7113-7120.
    41. Lai, W.; Haile, S. M. Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria. Journal of the American Ceramic Society 2005, 88 (11), 2979-2997.
    42. Cheng, Y.-T.; Verbrugge, M. W. Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles. J Electrochem Soc 2010, 157 (4), A508.
    43. Park, M.; Zhang, X.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J Power Sources 2010, 195 (24), 7904-7929.
    44. Goodenough, J. Design considerations. Solid State Ionics 1994, 69 (3-4), 184-198.
    45. Whittingham, M. S. Lithium Batteries and Cathode Materials. Chemical reviews 2004, 104 (10), 4271-4302.
    46. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater Res Bull 1980, 15 (6), 783-789.
    47. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B. Lithium insertion into manganese spinels. Mater Res Bull 1983, 18 (4), 461-472.
    48. Padhi, A. K. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J Electrochem Soc 1997, 144 (4), 1188.
    49. Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Development and challenges of LiFePO4cathode material for lithium-ion batteries. Energy Environ. Sci. 2011, 4 (2), 269-284.
    50. Antaya, M.; Cearns, K.; Preston, J. S.; Reimers, J. N.; Dahn, J. R. In situ growth of layered, spinel, and rock-salt LiCoO2 by laser ablation deposition. J Appl Phys 1994, 76 (5), 2799.
    51. Shao-Horn, Y.; Croguennec, L.; Delmas, C.; Nelson, E. C.; O'Keefe, M. A. Atomic resolution of lithium ions in LiCoO2. Nature materials 2003, 2 (7), 464-7.
    52. Scott, I. D.; Jung, Y. S.; Cavanagh, A. S.; Yan, Y.; Dillon, A. C.; George, S. M.; Lee, S. H. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett 2011, 11 (2), 414-8.
    53. Xia, H.; Lu, L.; Ceder, G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J Power Sources 2006, 159 (2), 1422-1427.
    54. Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature materials 2004, 3 (3), 147-152.
    55. Yamada, A.; Hosoya, M.; Chung, S.-C.; Kudo, Y.; Hinokuma, K.; Liu, K.-Y.; Nishi, Y. Olivine-type cathodes. J Power Sources 2003, 119-121, 232-238.
    56. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature materials 2002, 1 (2), 123-8.
    57. Fisher, C. A. J.; Islam, M. S. Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour. J Mater Chem 2008, 18 (11), 1209.
    58. Laffont, L.; Delacourt, C.; Gibot, P.; Wu, M. Y.; Kooyman, P.; Masquelier, C.; Tarascon, J. M. Study of the LiFePO4/FePO4Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy. Chem Mater 2006, 18 (23), 5520-5529.
    59. Saravanan, K.; Reddy, M. V.; Balaya, P.; Gong, H.; Chowdari, B. V. R.; Vittal, J. J. Storage performance of LiFePO4nanoplates. J. Mater. Chem. 2009, 19 (5), 605-610.
    60. Shin, H. C.; Nam, K. W.; Chang, W. Y.; Cho, B. W.; Yoon, W.-S.; Yang, X.-Q.; Chung, K. Y. Comparative studies on C-coated and uncoated LiFePO4 cycling at various rates and temperatures using synchrotron based in situ X-ray diffraction. Electrochim Acta 2011, 56 (3), 1182-1189.
    61. Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. Size Effects on Carbon-Free LiFePO[sub 4] Powders. Electrochemical and Solid-State Letters 2006, 9 (7), A352.
    62. Chung, S.-Y.; Chiang, Y.-M. Microscale Measurements of the Electrical Conductivity of Doped LiFePO[sub 4]. Electrochemical and Solid-State Letters 2003, 6 (12), A278.
    63. Kanamura, K.; Naito, H.; Yao, T.; Takehara, Z.-i. Structural change of the LiMn2O4 spinel structure induced by extraction of lithium. J Mater Chem 1996, 6 (1), 33.
    64. Xia, Y. An Investigation of Lithium Ion Insertion into Spinel Structure Li-Mn-O Compounds. J Electrochem Soc 1996, 143 (3), 825.
    65. Johnson, C. S.; Li, N.; Lefief, C.; Thackeray, M. M. Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50°C. Electrochem Commun 2007, 9 (4), 787-795.
    66. Tarascon, J. M. The Spinel Phase of LiMn[sub 2]O[sub 4] as a Cathode in Secondary Lithium Cells. J Electrochem Soc 1991, 138 (10), 2859.
    67. Hitachi's Initiatives on Lithium-ion Battery Business. http://www.hitachi.com/New/cnews/090417-pre.pdf.
    68. Ohzuku, T. Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell. J Electrochem Soc 1990, 137 (3), 769.
    69. Ledwaba, R. S.; Matshaba, M. G.; Ngoepe, P. E. Molecular dynamics simulations of spinels: LiMn2O4and Li4Mn5O12at high temperatures. IOP Conference Series: Materials Science and Engineering 2015, 80, 012024.
    70. Sun, Y.-K. Overcoming Jahn-Teller Distortion for Spinel Mn Phase. Electrochemical and Solid-State Letters 1999, 3 (1), 7.
    71. Grechnev, G. E.; Ahuja, R.; Johansson, B.; Eriksson, O. Electronic structure, magnetic, and cohesive properties ofLixMn2O4:Theory. Phys Rev B 2002, 65 (17).
    72. Jang, D. H. Dissolution of Spinel Oxides and Capacity Losses in 4 V Li∕Li[sub x]Mn[sub 2]O[sub 4] Cells. J Electrochem Soc 1996, 143 (7), 2204.
    73. Xia, Y. Capacity Fading on Cycling of 4 V Li∕LiMn[sub 2]O[sub 4] Cells. J Electrochem Soc 1997, 144 (8), 2593.
    74. Benedek, R.; Thackeray, M. M. Reaction Energy for LiMn[sub 2]O[sub 4] Spinel Dissolution in Acid. Electrochemical and Solid-State Letters 2006, 9 (6), A265.
    75. Yang, L.; Takahashi, M.; Wang, B. A study on capacity fading of lithium-ion battery with manganese spinel positive electrode during cycling. Electrochim Acta 2006, 51 (16), 3228-3234.
    76. Sun, Y.-K.; Jin, S.-H. Synthesis and electrochemical characteristics of spinel phase LiMn2O4-based cathode materials for lithium polymer batteries. J Mater Chem 1998, 8 (11), 2399-2404.
    77. Yamane, H.; Inoue, T.; Fujita, M.; Sano, M. A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80°C, and the suppressing substances of its fading. J Power Sources 2001, 99 (1-2), 60-65.
    78. Dai, Y.; Cai, L.; White, R. E. Capacity Fade Model for Spinel LiMn2O4 Electrode. J Electrochem Soc 2012, 160 (1), A182-A190.
    79. Tsunekawa, H.; Tanimoto, a. S.; Marubayashi, R.; Fujita, M.; Kifune, K.; Sano, M. Capacity Fading of Graphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries. J Electrochem Soc 2002, 149 (10), A1326.
    80. Thackeray, M. M. Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/Li[sub x]Mn[sub 2]O[sub 4] Cells. Electrochemical and Solid-State Letters 1999, 1 (1), 7.
    81. Gao, Y. Synthesis and Characterization of Li[sub 1+x]Mn[sub 2−x]O[sub 4] for Li-Ion Battery Applications. J Electrochem Soc 1996, 143 (1), 100.
    82. Guohua, L. The Spinel Phases LiM[sub y]Mn[sub 2−y]O[sub 4] (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries. J Electrochem Soc 1996, 143 (1), 178.
    83. Naghash, A. R.; Lee, J. Y. Effect of oxygen non-stoichiometry on the electrochemical performance of lithium manganese oxide spinels. J Power Sources 2001, 102 (1-2), 68-73.
    84. Wang, X.; Nakamura, H.; Yoshio, M. Capacity fading mechanism for oxygen defect spinel as a 4 V cathode material in Li-ion batteries. J Power Sources 2002, 110 (1), 19-26.
    85. Okada, M.; Lee, Y.-S.; Yoshio, M. Cycle characterizations of LiMxMn2−xO4 (M=Co, Ni) materials for lithium secondary battery at wide voltage region. J Power Sources 2000, 90 (2), 196-200.
    86. Fu, Y.; Jiang, H.; Hu, Y.; Dai, Y.; Zhang, L.; Li, C. Synergistic Enhancement Effect of Al Doping and Highly Active Facets of LiMn2O4Cathode Materials for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research 2015, 54 (15), 3800-3805.
    87. Kawai, H.; Nagata, M.; Tukamoto, H.; West, A. R. High-voltage lithium cathode materials. J Power Sources 1999, 81-82, 67-72.
    88. Sun, Y.-K.; Kim, D.-H.; Yoon, C. S.; Myung, S.-T.; Prakash, J.; Amine, K. A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion Batteries. Adv Funct Mater 2010, 20 (3), 485-491.
    89. Ohzuku, T.; Takeda, S.; Iwanaga, M. Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries. J Power Sources 1999, 81-82, 90-94.
    90. Shu, J.; Yi, T.-F.; Shui, M.; Wang, Y.; Zhu, R.-S.; Chu, X.-F.; Huang, F.; Xu, D.; Hou, L. Comparison of electronic property and structural stability of LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials for lithium-ion batteries. Computational Materials Science 2010, 50 (2), 776-779.
    91. Shi, S.; Wang, D.-s.; Meng, S.; Chen, L.; Huang, X. First-principles studies of cation-doped spinelLiMn2O4for lithium ion batteries. Phys Rev B 2003, 67 (11).
    92. Liu, G. Q.; Wen, L.; Liu, Y. M. Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries. J Solid State Electr 2010, 14 (12), 2191-2202.
    93. Wu, H. M.; Tu, J. P.; Chen, X. T.; Li, Y.; Zhao, X. B.; Cao, G. S. Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method. J Solid State Electr 2005, 11 (2), 173-176.
    94. Wei, Y. J.; Yan, L. Y.; Wang, C. Z.; Xu, X. G.; Wu, F.; Chen, G. Effects of Ni Doping on [MnO6] Octahedron in LiMn2O4. The Journal of Physical Chemistry B 2004, 108 (48), 18547-18551.
    95. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion Electrode Materials for Rechargeable Lithium Batteries. Adv Mater 1998, 10 (10), 725-763.
    96. Ohzuku, T.; Brodd, R. J. An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 2007, 174 (2), 449-456.
    97. Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Materials Science and Engineering: B 2015, 192, 3-25.
    98. Sun, Y.; Wan, P.; Pan, J.; Xu, C.; Liu, X. Low temperature synthesis of layered LiNiO2 cathode material in air atmosphere by ion exchange reaction. Solid State Ionics 2006, 177 (13-14), 1173-1177.
    99. Armstrong, A. R.; Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 1996, 381 (6582), 499-500.
    100. Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive Electrode Materials for Li-Ion and Li-Batteries†. Chem Mater 2010, 22 (3), 691-714.
    101. Myung, S.-T.; Komaba, S.; Kumagai, N. Hydrothermal Synthesis of Orthorhombic LiCo[sub x]Mn[sub 1−x]O[sub 2] and Their Structural Changes during Cycling. J Electrochem Soc 2002, 149 (10), A1349.
    102. Cho, J.; Kim, Y.; Kim, M. G. Synthesis and Characterization of Li[Ni0.41Li0.08Mn0.51]O2Nanoplates for Li Battery Cathode Material. The Journal of Physical Chemistry C 2007, 111 (7), 3192-3196.
    103. Yu, H.; Zhou, H. High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. J Phys Chem Lett 2013, 4 (8), 1268-80.
    104. Strobel, P.; Lambert-Andron, B. Crystallographic and magnetic structure of Li2MnO3. Journal of Solid State Chemistry 1988, 75 (1), 90-98.
    105. Rossouw, M. H.; Liles, D. C.; Thackeray, M. M. Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, Li0.36Mn0.91O2, and Its Lithiated Derivative, Li1.09Mn0.91O2. Journal of Solid State Chemistry 1993, 104 (2), 464-466.
    106. Rossouw, M. H.; Thackeray, M. M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mater Res Bull 1991, 26 (6), 463-473.
    107. He, P.; Yu, H.; Li, D.; Zhou, H. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 2012, 22 (9), 3680.
    108. Kalyani, P.; Chitra, S.; Mohan, T.; Gopukumar, S. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. J Power Sources 1999, 80 (1-2), 103-106.
    109. Wang, C.; Ma, X.; Zhou, L.; Cheng, J.; Sun, J.; Zhou, Y. Study on the rapid synthesis of LiNi1−xCoxO2 cathode material for lithium secondary battery. Electrochim Acta 2007, 52 (9), 3022-3027.
    110. Rossen, E.; Jones, C.; Dahn, J. Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics 1992, 57 (3-4), 311-318.
    111. Makimura, Y.; Ohzuku, T. Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries. J Power Sources 2003, 119-121, 156-160.
    112. Kang, K.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311 (5763), 977-80.
    113. Schougaard, S. B.; Bréger, J.; Jiang, M.; Grey, C. P.; Goodenough, J. B. LiNi0.5+δMn0.5–δO2—A High-Rate, High-Capacity Cathode for Lithium Rechargeable Batteries. Adv Mater 2006, 18 (7), 905-909.
    114. Ohzuku, T.; Makimura, Y. Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries. Chemistry Letters 2001, (7), 642-643.
    115. Yabuuchi, N.; Ohzuku, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 2003, 119-121, 171-174.
    116. Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 2007, 17 (30), 3112.
    117. Yan, J.; Liu, X.; Li, B. Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv. 2014, 4 (108), 63268-63284.
    118. Robert, R.; Villevieille, C.; Novák, P. Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. J Mater Chem A 2014, 2 (23), 8589.
    119. http://www.greencarcongress.com/2012/02/envia-20120227.html.
    120. Croy, J. R.; Balasubramanian, M.; Gallagher, K. G.; Burrell, A. K. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes. Acc Chem Res 2015, 48 (11), 2813-21.
    121. Ye, D. L.; Wang, L. Z. Li2MnO3based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries. Materials Technology 2014, 29 (sup4), A59-A69.
    122. Manthiram, A.; Knight, J. C.; Myung, S.-T.; Oh, S.-M.; Sun, Y.-K. Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives. Adv Energy Mater 2016, 6 (1), 1501010.
    123. Jarvis, K. A.; Deng, Z.; Allard, L. F.; Manthiram, A.; Ferreira, P. J. Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution. Chem Mater 2011, 23 (16), 3614-3621.
    124. Goodenough, J. B. Cathode materials: A personal perspective. J Power Sources 2007, 174 (2), 996-1000.
    125. Walter AVS, S. B. Advances in lithium-ion batteries. Kluwer Academic, Plenum: New York, 2002.
    126. Wu, Y. P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J Power Sources 2003, 114 (2), 228-236.
    127. Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G. Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angewandte Chemie 2012, 51 (9), 2164-7.
    128. Yi, T.-F.; Jiang, L.-J.; Shu, J.; Yue, C.-B.; Zhu, R.-S.; Qiao, H.-B. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J Phys Chem Solids 2010, 71 (9), 1236-1242.
    129. Liang, B.; Liu, Y.; Xu, Y. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources 2014, 267, 469-490.
    130. Liu, D.; Cao, G. Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energ Environ Sci 2010, 3 (9), 1218.
    131. Santhanam, R.; Rambabu, B. Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 2010, 195 (17), 5442-5451.
    132. Amine, K. A New Three-Volt Spinel Li[sub 1+x]Mn[sub 1.5]Ni[sub 0.5]O[sub 4] for Secondary Lithium Batteries. J Electrochem Soc 1996, 143 (5), 1607.
    133. Patoux, S.; Sannier, L.; Lignier, H.; Reynier, Y.; Bourbon, C.; Jouanneau, S.; Le Cras, F.; Martinet, S. High voltage nickel manganese spinel oxides for Li-ion batteries. Electrochim Acta 2008, 53 (12), 4137-4145.
    134. Amdouni, N.; Zaghib, K.; Gendron, F.; Mauger, A.; Julien, C. M. Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods. J Magn Magn Mater 2007, 309 (1), 100-105.
    135. Amdouni, N.; Zaghib, K.; Gendron, F.; Mauger, A.; Julien, C. M. Structure and insertion properties of disordered and ordered LiNi0.5Mn1.5O4 spinels prepared by wet chemistry. Ionics 2006, 12 (2), 117-126.
    136. Ma, X.; Kang, B.; Ceder, G. High Rate Micron-Sized Ordered LiNi[sub 0.5]Mn[sub 1.5]O[sub 4]. J Electrochem Soc 2010, 157 (8), A925.
    137. Pasero, D.; Reeves, N.; Pralong, V.; West, A. R. Oxygen Nonstoichiometry and Phase Transitions in LiMn[sub 1.5]Ni[sub 0.5]O[sub 4−δ]. J Electrochem Soc 2008, 155 (4), A282.
    138. Kunduraci, M.; Al-Sharab, J. F.; Amatucci, G. G. High-Power Nanostructured LiMn2-xNixO4High-Voltage Lithium-Ion Battery Electrode Materials: Electrochemical Impact of Electronic Conductivity and Morphology. Chem Mater 2006, 18 (15), 3585-3592.
    139. Kunduraci, M.; Amatucci, G. G. Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50≥x≥0.36) spinels. J Power Sources 2007, 165 (1), 359-367.
    140. Zhong, Q. Synthesis and Electrochemistry of LiNi[sub x]Mn[sub 2−x]O[sub 4]. J Electrochem Soc 1997, 144 (1), 205.
    141. Cabana, J.; Casas-Cabanas, M.; Omenya, F. O.; Chernova, N. A.; Zeng, D.; Whittingham, M. S.; Grey, C. P. Composition-structure relationships in the Li-ion battery electrode material LiNi(0.5)Mn(1.5)O(4). Chem Mater 2012, 24 (15), 2952-2964.
    142. Idemoto, Y.; Narai, H.; Koura, N. Crystal structure and cathode performance dependence on oxygen content of LiMn1.5Ni0.5O4 as a cathode material for secondary lithium batteries. J Power Sources 2003, 119-121, 125-129.
    143. Ivanova, S.; Zhecheva, E.; Stoyanova, R.; Nihtianova, D.; Wegner, S.; Tzvetkova, P.; Simova, S. High-Voltage LiNi1/2Mn3/2O4Spinel: Cationic Order and Particle Size Distribution. The Journal of Physical Chemistry C 2011, 115 (50), 25170-25182.
    144. Julien, C. M.; Gendron, F.; Amdouni, A.; Massot, M. Lattice vibrations of materials for lithium rechargeable batteries. VI: Ordered spinels. Materials Science and Engineering: B 2006, 130 (1-3), 41-48.
    145. Mukai, K.; Sugiyama, J. An Indicator to Identify the Li[Ni[sub 1/2]Mn[sub 3/2]]O[sub 4] (P4[sub 3]32): DC-Susceptibility Measurements. J Electrochem Soc 2010, 157 (6), A672.
    146. Feng, X. Y.; Shen, C.; Fang, X.; Chen, C. H. Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance. J Alloy Compd 2011, 509 (8), 3623-3626.
    147. Fang, X.; Ding, N.; Feng, X. Y.; Lu, Y.; Chen, C. H. Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: Electrochemical performance, diffusion coefficient and capacity loss mechanism. Electrochim Acta 2009, 54 (28), 7471-7475.
    148. Kim, J. H.; Myung, S. T.; Yoon, C. S.; Kang, S. G.; Sun, Y. K. Comparative Study of LiNi0.5Mn1.5O4-δand LiNi0.5Mn1.5O4Cathodes Having Two Crystallographic Structures: Fd3̄mandP4332. Chem Mater 2004, 16 (5), 906-914.
    149. Kim, J. H.; Yoon, C. S.; Myung, S. T.; Prakash, J.; Sun, Y. K. Phase Transitions in Li[sub 1−δ]Ni[sub 0.5]Mn[sub 1.5]O[sub 4] during Cycling at 5 V. Electrochemical and Solid-State Letters 2004, 7 (7), A216.
    150. Kunduraci, M.; Amatucci, G. G. Synthesis and Characterization of Nanostructured 4.7V Li[sub x]Mn[sub 1.5]Ni[sub 0.5]O[sub 4] Spinels for High-Power Lithium-Ion Batteries. J Electrochem Soc 2006, 153 (7), A1345.
    151. Wang, L.; Li, H.; Huang, X.; Baudrin, E. A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics 2011, 193 (1), 32-38.
    152. Hagh, N. M.; Cosandey, F.; Rangan, S.; Bartynski, R.; Amatucci, G. G. Electrochemical Performance of Acid-Treated Nanostructured LiMn[sub 1.5]Ni[sub 0.5]O[sub 4−δ] Spinel at Elevated Temperature. J Electrochem Soc 2010, 157 (3), A305.
    153. Liu, J.; Manthiram, A. Kinetics Study of the 5 V Spinel Cathode LiMn[sub 1.5]Ni[sub 0.5]O[sub 4] Before and After Surface Modifications. J Electrochem Soc 2009, 156 (11), A833.
    154. Schmidt, R.; Basu, A.; Brinkman, A. W.; Klusek, Z.; Datta, P. K. Electron-hopping modes in NiMn[sub 2]O[sub 4+δ] materials. Appl Phys Lett 2005, 86 (7), 073501.
    155. Tateishi, K.; du Boulay, D.; Ishizawa, N. The effect of mixed Mn valences on Li migration in LiMn[sub 2]O[sub 4] spinel: A molecular dynamics study. Appl Phys Lett 2004, 84 (4), 529.
    156. Du, W.; Gupta, A.; Zhang, X.; Sastry, A. M.; Shyy, W. Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance. International Journal of Heat and Mass Transfer 2010, 53 (17-18), 3552-3561.
    157. Jo, M.; Hong, Y.-S.; Choo, J.; Cho, J. Effect of LiCoO[sub 2] Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries. J Electrochem Soc 2009, 156 (6), A430.
    158. Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J. A high energy Li-ion battery based on nanosized LiNi0.5Mn1.5O4 cathode material. J Power Sources 2008, 183 (1), 310-315.
    159. Bandhauer, T. M.; Garimella, S.; Fuller, T. F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J Electrochem Soc 2011, 158 (3), R1.
    160. Lee, K. T.; Cho, J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 2011, 6 (1), 28-41.
    161. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407 (6803), 496-9.
    162. Jin, Y.-C.; Lu, M.-I.; Wang, T.-H.; Yang, C.-R.; Duh, J.-G. Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery. J Power Sources 2014, 262, 483-487.
    163. Hagh, N. M.; Amatucci, G. G. A new solid-state process for synthesis of LiMn1.5Ni0.5O4−δ spinel. J Power Sources 2010, 195 (15), 5005-5012.
    164. Sun, Q.; Li, X.-h.; Wang, Z.-x.; Ji, Y. Synthesis and electrochemical performance of 5V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Transactions of Nonferrous Metals Society of China 2009, 19 (1), 176-181.
    165. Liu, D.; Han, J.; Goodenough, J. B. Structure, morphology, and cathode performance of Li1−x[Ni0.5Mn1.5]O4 prepared by coprecipitation with oxalic acid. J Power Sources 2010, 195 (9), 2918-2923.
    166. Uzunova, S.; Banov, B.; Momchilov, A. Method of Synthesis of Electrode Materials with Controlled Particle Size for Lithium Batteries. 2002, 545-550.
    167. Fang, X.; Lu, Y.; Ding, N.; Feng, X. Y.; Liu, C.; Chen, C. H. Electrochemical properties of nano- and micro-sized LiNi0.5Mn1.5O4 synthesized via thermal decomposition of a ternary eutectic Li–Ni–Mn acetate. Electrochim Acta 2010, 55 (3), 832-837.
    168. Takahashi, K.; Saitoh, M.; Sano, M.; Fujita, M.; Kifune, K. Electrochemical and Structural Properties of a 4.7 V-Class LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Positive Electrode Material Prepared with a Self-Reaction Method. J Electrochem Soc 2004, 151 (1), A173.
    169. Chang, Z.; Dai, D.; Tang, H.; Yu, X.; Yuan, X.-Z.; Wang, H. Effects of precursor treatment with reductant or oxidant on the structure and electrochemical properties of LiNi0.5Mn1.5O4. Electrochim Acta 2010, 55 (19), 5506-5510.
    170. Vitucci, F. M.; Paolone, A.; Palumbo, O.; Greco, G.; Lombardo, L.; Köntje, M.; Latini, A.; Panero, S.; Brutti, S.; Vyas, B. High-Temperature Structural Evolution of the Disordered LiMn1.5Ni0.5O4. Journal of the American Ceramic Society 2016, 99 (5), 1815-1822.
    171. Arrebola, J. C.; Caballero, A.; Cruz, M.; Hernán, L.; Morales, J.; Castellón, E. R. Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer-Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries. Adv Funct Mater 2006, 16 (14), 1904-1912.
    172. Yu, H.; Kim, H.; Wang, Y.; He, P.; Asakura, D.; Nakamura, Y.; Zhou, H. High-energy 'composite' layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem Chem Phys 2012, 14 (18), 6584-95.
    173. Deng, H.; Belharouak, I.; Sun, Y.-K.; Amine, K. LixNi0.25Mn0.75Oy (0.5 ≤x≤ 2, 2 ≤y≤ 2.75) compounds for high-energy lithium-ion batteries. J Mater Chem 2009, 19 (26), 4510.
    174. Feng, X.; Yang, Z.; Tang, D.; Kong, Q.; Gu, L.; Wang, Z.; Chen, L. Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4. Phys Chem Chem Phys 2015, 17 (2), 1257-64.
    175. Boulineau, A.; Croguennec, L.; Delmas, C.; Weill, F. Reinvestigation of Li2MnO3Structure: Electron Diffraction and High Resolution TEM. Chem Mater 2009, 21 (18), 4216-4222.
    176. Koga, H.; Croguennec, L.; Menetrier, M.; Douhil, K.; Belin, S.; Bourgeois, L.; Suard, E.; Weill, F.; Delmas, C. Reversible Oxygen Participation to the Redox Processes Revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J Electrochem Soc 2013, 160 (6), A786-A792.
    177. Fell, C. R.; Qian, D.; Carroll, K. J.; Chi, M.; Jones, J. L.; Meng, Y. S. Correlation Between Oxygen Vacancy, Microstrain, and Cation Distribution in Lithium-Excess Layered Oxides During the First Electrochemical Cycle. Chem Mater 2013, 25 (9), 1621-1629.
    178. Wu, Y.; Manthiram, A. Effect of Al[sup 3+] and F[sup −] Doping on the Irreversible Oxygen Loss from Layered Li[Li[sub 0.17]Mn[sub 0.58]Ni[sub 0.25]]O[sub 2] Cathodes. Electrochemical and Solid-State Letters 2007, 10 (6), A151.
    179. Lu, Z.; Dahn, J. R. Understanding the Anomalous Capacity of Li/Li[Ni[sub x]Li[sub (1/3−2x/3)]Mn[sub (2/3−x/3)]]O[sub 2] Cells Using In Situ X-Ray Diffraction and Electrochemical Studies. J Electrochem Soc 2002, 149 (7), A815.
    180. Tran, N.; Croguennec, L.; Ménétrier, M.; Weill, F.; Biensan, P.; Jordy, C.; Delmas, C. Mechanisms Associated with the “Plateau” Observed at High Voltage for the Overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2System. Chem Mater 2008, 20 (15), 4815-4825.
    181. Lu, Z.; Chen, Z.; Dahn, J. R. Lack of Cation Clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0 <x≤1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2(0 <x< 1). Chem Mater 2003, 15 (16), 3214-3220.
    182. Armstrong, A. R.; Holzapfel, M.; Novak, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. Journal of the American Chemical Society 2006, 128 (26), 8694-8.
    183. Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; LiCurrent address: eVionyx Inc, H. N.; Hackney, S. A. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 2005, 15 (23), 2257.
    184. Zhang, T.; Li, J. T.; Liu, J.; Deng, Y. P.; Wu, Z. G.; Yin, Z. W.; Guo, D.; Huang, L.; Sun, S. G. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries. Chem Commun (Camb) 2016, 52 (25), 4683-6.
    185. Zheng, J.; Gu, M.; Genc, A.; Xiao, J.; Xu, P.; Chen, X.; Zhu, Z.; Zhao, W.; Pullan, L.; Wang, C.; Zhang, J. G. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett 2014, 14 (5), 2628-35.
    186. Zheng, J.; Gu, M.; Xiao, J.; Zuo, P.; Wang, C.; Zhang, J. G. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett 2013, 13 (8), 3824-30.
    187. Wu, Y.; Ma, C.; Yang, J.; Li, Z.; Allard, L. F.; Liang, C.; Chi, M. Probing the initiation of voltage decay in Li-rich layered cathode materials at the atomic scale. J. Mater. Chem. A 2015, 3 (10), 5385-5391.
    188. Croy, J. R.; Gallagher, K. G.; Balasubramanian, M.; Long, B. R.; Thackeray, M. M. Quantifying Hysteresis and Voltage Fade in xLi2MnO3bullet(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content. J Electrochem Soc 2013, 161 (3), A318-A325.
    189. Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G.; Browning, N. D.; Liu, J.; Wang, C. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. Acs Nano 2013, 7 (1), 760-7.
    190. Xu, M.; Chen, Z.; Zhu, H.; Yan, X.; Li, L.; Zhao, Q. Mitigating capacity fade by constructing highly ordered mesoporous Al2O3/polyacene double-shelled architecture in Li-rich cathode materials. J. Mater. Chem. A 2015, 3 (26), 13933-13945.
    191. Kim, I. T.; Knight, J. C.; Celio, H.; Manthiram, A. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating. J Mater Chem A 2014, 2 (23), 8696.
    192. Yan, P.; Nie, A.; Zheng, J.; Zhou, Y.; Lu, D.; Zhang, X.; Xu, R.; Belharouak, I.; Zu, X.; Xiao, J.; Amine, K.; Liu, J.; Gao, F.; Shahbazian-Yassar, R.; Zhang, J. G.; Wang, C. M. Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li(1.2)Ni(0.2)Mn(0.6)O2 cathode material for lithium ion batteries. Nano Lett 2015, 15 (1), 514-22.
    193. Fell, C. R.; Carroll, K. J.; Chi, M.; Meng, Y. S. Synthesis–Structure–Property Relations in Layered, “Li-excess” Oxides Electrode Materials Li[Li[sub 1/3−2x/3]Ni[sub x]Mn[sub 2/3−x/3]]O[sub 2] (x=1/3, 1/4, and 1/5). J Electrochem Soc 2010, 157 (11), A1202.
    194. Zhang, H. Z.; Qiao, Q. Q.; Li, G. R.; Ye, S. H.; Gao, X. P. Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J Mater Chem 2012, 22 (26), 13104.
    195. Nakahara, K.; Tabuchi, M.; Kuroshima, S.; Toda, A.; Tanimoto, K.; Nakano, K. Drastically Improved Performances of Graphite/Li1.26Mn0.52Fe0.22O2 Cell with Stepwise Pre-Cycling Treatment that Causes Peroxide Forming. J Electrochem Soc 2012, 159 (9), A1398-A1404.
    196. Ito, A.; Li, D.; Sato, Y.; Arao, M.; Watanabe, M.; Hatano, M.; Horie, H.; Ohsawa, Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources 2010, 195 (2), 567-573.
    197. Ito, A.; Li, D.; Ohsawa, Y.; Sato, Y. A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment. J Power Sources 2008, 183 (1), 344-346.
    198. Hong, J.; Lim, H.-D.; Lee, M.; Kim, S.-W.; Kim, H.; Oh, S.-T.; Chung, G.-C.; Kang, K. Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries. Chem Mater 2012, 24 (14), 2692-2697.
    199. Gu, M.; Belharouak, I.; Genc, A.; Wang, Z.; Wang, D.; Amine, K.; Gao, F.; Zhou, G.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G.; Browning, N. D.; Liu, J.; Wang, C. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano Lett 2012, 12 (10), 5186-91.
    200. Yu, X.; Lyu, Y.; Gu, L.; Wu, H.; Bak, S.-M.; Zhou, Y.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K.-W.; Yang, X.-Q. Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li1.2Ni0.15Co0.1Mn0.55O2Cathode Materials. Adv Energy Mater 2014, 4 (5), 1300950.
    201. Ates, M. N.; Mukerjee, S.; Abraham, K. M. A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries. J Electrochem Soc 2014, 161 (3), A355-A363.
    202. Rosina, K. J.; Jiang, M.; Zeng, D.; Salager, E.; Best, A. S.; Grey, C. P. Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries. J Mater Chem 2012, 22 (38), 20602.
    203. Guan, X.; Ding, B.; Liu, X.; Zhu, J.; Mi, C.; Zhang, X. Enhancing the electrochemical performance of Li1.2Ni0.2Mn0.6O2 by surface modification with nickel–manganese composite oxide. J Solid State Electr 2013, 17 (7), 2087-2093.
    204. Shi, S. J.; Tu, J. P.; Tang, Y. Y.; Liu, X. Y.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 2013, 88, 671-679.
    205. Han, S.; Qiu, B.; Wei, Z.; Xia, Y.; Liu, Z. Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. J Power Sources 2014, 268, 683-691.
    206. Yu, D. Y. W.; Yanagida, K.; Nakamura, H. Surface Modification of Li-Excess Mn-based Cathode Materials. J Electrochem Soc 2010, 157 (11), A1177.
    207. Jin, X.; Xu, Q.; Liu, H.; Yuan, X.; Xia, Y. Excellent rate capability of Mg doped Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material for lithium-ion battery. Electrochim Acta 2014, 136, 19-26.
    208. Iftekhar, M.; Drewett, N. E.; Armstrong, A. R.; Hesp, D.; Braga, F.; Ahmed, S.; Hardwick, L. J. Characterization of Aluminum Doped Lithium-Manganese Rich Composites for Higher Rate Lithium-Ion Cathodes. J Electrochem Soc 2014, 161 (14), A2109-A2116.
    209. Jiao, L. F.; Zhang, M.; Yuan, H. T.; Zhao, M.; Guo, J.; Wang, W.; Zhou, X. D.; Wang, Y. M. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x=0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources 2007, 167 (1), 178-184.
    210. Tabuchi, M.; Nabeshima, Y.; Takeuchi, T.; Kageyama, H.; Tatsumi, K.; Akimoto, J.; Shibuya, H.; Imaizumi, J. Synthesis and electrochemical characterization of Fe and Ni substituted Li2MnO3—An effective means to use Fe for constructing “Co-free” Li2MnO3 based positive electrode material. J Power Sources 2011, 196 (7), 3611-3622.
    211. Song, B.; Lai, M. O.; Lu, L. Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim Acta 2012, 80, 187-195.
    212. .J.-H. Kima, C. W. P., Y.-K. Sun. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35−x/2CoxMn0.55−x/2]O2 cathode materials. Solid State Ionics 2003, 164 (1-2), 43-49.
    213. Ye, S.; Xia, Y.; Zhang, P.; Qiao, Z. Al, B, and F doped LiNi1/3Co1/3Mn1/3O2 as cathode material of lithium-ion batteries. J Solid State Electr 2006, 11 (6), 805-810.
    214. Kang, S. H.; Belharouak, I.; Sun, Y. K.; Amine, K. Effect of fluorine on the electrochemical properties of layered Li(Ni0.5Mn0.5)O2 cathode materials. J Power Sources 2005, 146 (1-2), 650-653.
    215. Zheng, J.; Wu, X.; Yang, Y. Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim Acta 2013, 105, 200-208.
    216. Kang, S. H.; Thackeray, M. M. Stabilization of xLi[sub 2]MnO[sub 3]⋅(1−x)LiMO[sub 2] Electrode Surfaces (M=Mn,Ni,Co) with Mildly Acidic, Fluorinated Solutions. J Electrochem Soc 2008, 155 (4), A269.
    217. Fan, J.; Li, G.; Luo, D.; Fu, C.; Li, Q.; Zheng, J.; Li, L. Hydrothermal-Assisted Synthesis of Li-Rich Layered Oxide Microspheres with High Capacity and Superior Rate-capability as a Cathode for Lithium-ion Batteries. Electrochim Acta 2015, 173, 7-16.
    218. Kim, Y.; Hong, Y.; Kim, M. G.; Cho, J. Li0.93[Li0.21Co0.28Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite. Electrochem Commun 2007, 9 (5), 1041-1046.
    219. Lin, J.; Mu, D.; Jin, Y.; Wu, B.; Ma, Y.; Wu, F. Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery. J Power Sources 2013, 230, 76-80.
    220. Kim, M. G.; Jo, M.; Hong, Y. S.; Cho, J. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode. Chem Commun (Camb) 2009, (2), 218-20.
    221. Hong, Y.-S.; Park, Y. J.; Ryu, K. S.; Chang, S. H.; Kim, M. G. Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1−2x)/3Mn(2−x)/3]O2prepared by a simple combustion method. J. Mater. Chem. 2004, 14 (9), 1424-1429.
    222. Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O(2) for high-rate performance lithium-ion batteries. Adv Mater 2010, 22 (39), 4364-7.
    223. Liu, W.; Oh, P.; Liu, X.; Myeong, S.; Cho, W.; Cho, J. Countering Voltage Decay and Capacity Fading of Lithium-Rich Cathode Material at 60 °C by Hybrid Surface Protection Layers. Adv Energy Mater 2015, 5 (13), 1500274.
    224. Yang, F.; Zhang, Q.; Hu, X.; Peng, T. Synthesis of layered xLi2MnO3·(1−x)LiMnO2 nanoplates and its electrochemical performance as Li-rich cathode materials for Li-ion battery. Electrochim Acta 2015, 165, 182-190.
    225. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4), 16013.
    226. Kan, W. H.; Huq, A.; Manthiram, A. Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi2–yMnyO4(0.4 ≤y≤ 1). Chem Mater 2015, 27 (22), 7729-7733.
    227. Thackeray, M. M. Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries. J Electrochem Soc 1995, 142 (8), 2558.
    228. Johnson, C. S.; Li, N.; Vaughey, J. T.; Hackney, S. A.; Thackeray, M. M. Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3·(1−x)Li1+yMn2−yO4 (0<x<1, 0⩽y⩽0.33) for lithium batteries. Electrochem Commun 2005, 7 (5), 528-536.
    229. Cabana, J.; Johnson, C. S.; Yang, X.-Q.; Chung, K.-Y.; Yoon, W.-S.; Kang, S.-H.; Thackeray, M. M.; Grey, C. P. Structural complexity of layered-spinel composite electrodes for Li-ion batteries. Journal of Materials Research 2011, 25 (08), 1601-1616.
    230. Lee, E.-S.; Huq, A.; Chang, H.-Y.; Manthiram, A. High-Voltage, High-Energy Layered-Spinel Composite Cathodes with Superior Cycle Life for Lithium-Ion Batteries. Chem Mater 2012, 24 (3), 600-612.
    231. Wu, F.; Li, N.; Su, Y.; Shou, H.; Bao, L.; Yang, W.; Zhang, L.; An, R.; Chen, S. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater 2013, 25 (27), 3722-6.
    232. Cabana, J.; Kang, S.-H.; Johnson, C. S.; Thackeray, M. M.; Grey, C. P. Structural and Electrochemical Characterization of Composite Layered-Spinel Electrodes Containing Ni and Mn for Li-Ion Batteries. J Electrochem Soc 2009, 156 (9), A730.
    233. Park, S.; Kang, S.; Johnson, C.; Amine, K.; Thackeray, M. Lithium–manganese–nickel-oxide electrodes with integrated layered–spinel structures for lithium batteries. Electrochem Commun 2007, 9 (2), 262-268.
    234. Kim, D.; Sandi, G.; Croy, J. R.; Gallagher, K. G.; Kang, S. H.; Lee, E.; Slater, M. D.; Johnson, C. S.; Thackeray, M. M. Composite 'Layered-Layered-Spinel' Cathode Structures for Lithium-Ion Batteries. J Electrochem Soc 2012, 160 (1), A31-A38.
    235. Lu, J.; Chang, Y.-L.; Song, B.; Xia, H.; Yang, J.-R.; Lee, K. S.; Lu, L. High energy spinel-structured cathode stabilized by layered materials for advanced lithium-ion batteries. J Power Sources 2014, 271, 604-613.
    236. Liu, C.; Wang, Z.; Shi, C.; Liu, E.; He, C.; Zhao, N. Nanostructured hybrid layered-spinel cathode material synthesized by hydrothermal method for lithium-ion batteries. ACS Appl Mater Interfaces 2014, 6 (11), 8363-8.
    237. Kottegoda, I. R. M.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. High-Rate-Capable Lithium-Ion Battery Based on Surface-Modified Natural Graphite Anode and Substituted Spinel Cathode for Hybrid Electric Vehicles. J Electrochem Soc 2005, 152 (8), A1595.
    238. Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z. Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte. J Electrochem Soc 2004, 151 (8), A1120.
    239. Xu, K.; von Wald Cresce, A. Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. Journal of Materials Research 2012, 27 (18), 2327-2341.
    240. Xu, K. Electrolytes and Interphasial Chemistry in Li Ion Devices. Energies 2010, 3 (1), 135-154.
    241. Wu, H.-C.; Lee, E.; Wu, N.-L.; Jow, T. R. Effects of current collectors on power performance of Li4Ti5O12 anode for Li-ion battery. J Power Sources 2012, 197, 301-304.
    242. Lin, C.-Y.; Duh, J.-G.; Hsu, C.-H.; Chen, J.-M. LiNi0.5Mn1.5O4 cathode material by low-temperature solid-state method with excellent cycleability in lithium ion battery. Mater Lett 2010, 64 (21), 2328-2330.
    243. Jin, Y.-C.; Duh, J.-G. Feasible nonaqueous route to synthesize a high-voltage spinel cathode material for lithium ion batteries. RSC Adv. 2015, 5 (9), 6919-6924.
    244. Xu, L.; Hou, P. Y.; Zhang, Y. T.; Zhang, H. Z.; Song, D. W.; Shi, X. X.; Wang, X. Q.; Zhang, L. Q. Carbonate coprecipitation preparation of Li-rich layered oxides using the oxalate anion ligand as high-energy, high-power and durable cathode materials for lithium-ion batteries. J Mater Chem A 2015, 3 (42), 21219-21226.
    245. Jin, Y.-C.; Duh, J.-G. Nanostructured LiNi0.5Mn1.5O4 cathode material synthesized by polymer-assisted co-precipitation method with improved rate capability. Mater Lett 2013, 93, 77-80.
    246. Jin, Y. C.; Duh, J. G. Fluorination Induced the Surface Segregation of High Voltage Spinel on Lithium-Rich Layered Cathodes for Enhanced Rate Capability in Lithium Ion Batteries. ACS Appl Mater Interfaces 2016, 8 (6), 3883-91.
    247. Chen, Y. H.; Wang, C. W.; Liu, G.; Song, X. Y.; Battaglia, V. S.; Sastry, A. M. Selection of Conductive Additives in Li-Ion Battery Cathodes. J Electrochem Soc 2007, 154 (10), A978.
    248. Sinha, N. N.; Burns, J. C.; Sanderson, R. J.; Dahn, J. Comparative Studies of Hardware Corrosion at High Potentials in Coin-Type Cells with Non Aqueous Electrolytes. J Electrochem Soc 2011, 158 (12), A1400.
    249. Wu, H. M.; Tu, J. P.; Chen, X. T.; Shi, D. Q.; Zhao, X. B.; Cao, G. S. Synthesis and characterization of abundant Ni-doped LiNixMn2−xO4 (x=0.1–0.5) powders by spray-drying method. Electrochim Acta 2006, 51 (20), 4148-4152.
    250. Lafont, U.; Locati, C.; Borghols, W. J. H.; Łasińska, A.; Dygas, J.; Chadwick, A. V.; Kelder, E. M. Nanosized high voltage cathode material LiMg0.05Ni0.45Mn1.5O4: Structural, electrochemical and in situ investigation. J Power Sources 2009, 189 (1), 179-184.
    251. Singh, G.; Sil, A.; Ghosh, S. Structural, thermal and morphological studies of magnesium substituted-lithium manganese oxide spinels. Physica B: Condensed Matter 2009, 404 (20), 3807-3813.
    252. Yi, T.-F.; Zhu, Y.-R. Synthesis and electrochemistry of 5V LiNi0.4Mn1.6O4 cathode materials synthesized by different methods. Electrochim Acta 2008, 53 (7), 3120-3126.
    253. Ammundsen, B.; Burns, G. R.; Islam, M. S.; Kanoh, H.; Rozière, J. Lattice Dynamics and Vibrational Spectra of Lithium Manganese Oxides: A Computer Simulation and Spectroscopic Study. The Journal of Physical Chemistry B 1999, 103 (25), 5175-5180.
    254. Xiao, J.; Chen, X.; Sushko, P. V.; Sushko, M. L.; Kovarik, L.; Feng, J.; Deng, Z.; Zheng, J.; Graff, G. L.; Nie, Z.; Choi, D.; Liu, J.; Zhang, J. G.; Whittingham, M. S. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 2012, 24 (16), 2109-16.
    255. Xia, H.; Meng, Y. S.; Lu, L.; Ceder, G. Electrochemical Properties of Nonstoichiometric LiNi[sub 0.5]Mn[sub 1.5]O[sub 4−δ] Thin-Film Electrodes Prepared by Pulsed Laser Deposition. J Electrochem Soc 2007, 154 (8), A737.
    256. Jin, Y.-C.; Lin, C.-Y.; Duh, J.-G. Improving rate capability of high potential LiNi0.5Mn1.5O4−x cathode materials via increasing oxygen non-stoichiometries. Electrochim Acta 2012, 69, 45-50.
    257. Di Lecce, D.; Hassoun, J. Lithium Transport Properties in LiMn1−αFeαPO4Olivine Cathodes. The Journal of Physical Chemistry C 2015, 119 (36), 20855-20863.
    258. Huang, C. K.; Sakamoto, J. S.; Wolfenstine, J.; Surampudi, S. The Limits of Low-Temperature Performance of Li-Ion Cells. J Electrochem Soc 2000, 147 (8), 2893.
    259. Ho, C. Application of A-C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films. J Electrochem Soc 1980, 127 (2), 343.
    260. Park, C.-K.; Park, S.-B.; Oh, S.-H.; Jang, H.; Cho, W.-I. Li Ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4. Bulletin of the Korean Chemical Society 2011, 32 (3), 836-840.
    261. Liu, H.; Li, C.; Zhang, H. P.; Fu, L. J.; Wu, Y. P.; Wu, H. Q. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J Power Sources 2006, 159 (1), 717-720.
    262. Macdonald, E. B. a. J. R. Impedance Spectroscopy Theory, Experiment, and Applications. John Wiley & Sons, Inc.: Hoboken, New Jersey., 2005.
    263. Okubo, M.; Tanaka, Y.; Zhou, H.; Kudo, T.; Honma, I. Determination of activation energy for Li ion diffusion in electrodes. J Phys Chem B 2009, 113 (9), 2840-7.
    264. Takahashi, I.; Murayama, H.; Sato, K.; Naka, T.; Kitada, K.; Fukuda, K.; Koyama, Y.; Arai, H.; Matsubara, E.; Uchimoto, Y.; Ogumi, Z. Kinetically asymmetric charge and discharge behavior of LiNi0.5Mn1.5O4at low temperature observed by in situ X-ray diffraction. J Mater Chem A 2014, 2 (37), 15414.
    265. Yu, P. Determination of the Lithium Ion Diffusion Coefficient in Graphite. J Electrochem Soc 1999, 146 (1), 8.
    266. Ma, J.; Hu, P.; Cui, G.; Chen, L. Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chem Mater 2016, 28 (11), 3578-3606.
    267. Seyyedhosseinzadeh, H.; Mahboubi, F.; Azadmehr, A. Diffusion mechanism of lithium ions in LiNi0.5Mn1.5O4. Electrochim Acta 2013, 108, 867-875.
    268. https://www.sigmaaldrich.com/taiwan.html.
    269. Liu, W. Synthesis and Electrochemical Studies of Spinel Phase LiMn[sub 2]O[sub 4] Cathode Materials Prepared by the Pechini Process. J Electrochem Soc 1996, 143 (3), 879.
    270. Yu, L.; Cao, Y.; Yang, H.; Ai, X. Synthesis and electrochemical properties of high-voltage LiNi0.5Mn1.5O4 electrode material for Li-ion batteries by the polymer-pyrolysis method. J Solid State Electr 2005, 10 (5), 283-287.
    271. Sadek, P. C. The HPLC Solvent Guide. John Wiley & Sons, Inc.: 2002; Vol. 2nd Edition.
    272. Michael I. Bessonov, V. A. Z. Polyamic Acids and Polyimides: Synthesis, Transformations, and Structure. CRC Press: 1993.
    273. Choi, S. H.; Son, J.-W.; Yoon, Y. S.; Kim, J. Particle size effects on temperature-dependent performance of LiCoO2 in lithium batteries. J Power Sources 2006, 158 (2), 1419-1424.
    274. Jiang, C.; Ichihara, M.; Honma, I.; Zhou, H. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim Acta 2007, 52 (23), 6470-6475.
    275. Fan, Y.; Wang, J.; Ye, X.; Zhang, J. Physical properties and electrochemical performance of LiNi0.5Mn1.5O4 cathode material prepared by a coprecipitation method. Mater Chem Phys 2007, 103 (1), 19-23.
    276. Yuan, X.; Xu, Q.-j.; Wang, C.; Liu, X.; Liu, H.; Xia, Y. A facile and novel organic coprecipitation strategy to prepare layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high capacity and excellent cycling stability. J Power Sources 2015, 279, 157-164.
    277. Boyle, T. J.; Ingersoll, D.; Alam, T. M.; Tafoya, C. J.; Rodriguez, M. A.; Vanheusden, K.; Doughty, D. H. Rechargeable Lithium Battery Cathodes. Nonaqueous Synthesis, Characterization, and Electrochemical Properties of LiCoO2. Chem Mater 1998, 10 (8), 2270-2276.
    278. Feng, J.; Huang, Z.; Guo, C.; Chernova, N. A.; Upreti, S.; Whittingham, M. S. An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. ACS Appl Mater Interfaces 2013, 5 (20), 10227-32.
    279. Srivastava, A. K. Oxide Nanostructures: Growth, Microstructures, and Properties. CRC Press: 2014.
    280. Watts, J. C.; Larson, P. A. Dimethylacetamide. 2002.
    281. Material Safety Data Sheet: N,N-Dimethylacetamide MSDS. http://www.eenvandaag.nl/uploads/doc/Toxocologischrapport.pdf.
    282. Ma, G.; Zhang, Y.; Lin, J.; Chen, Z.; Zhao, R.; Tong, P.; Zou, L.; Chen, H. Synthesis of high-voltage spinel LiNi0.5Mn1.5O4 material for lithium-ion batteries by a metal-cholate supramolecular hydrogel as precursor. J Solid State Electr 2015, 19 (11), 3365-3372.
    283. Crist, B. V. Handbooks of Monochromatic XPS Spectra: The Elements and Native Oxides. John Wiley & Sons, Inc.: 2000.
    284. Fang, H.; Li, L.; Li, G. A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4. J Power Sources 2007, 167 (1), 223-227.
    285. Kaji, S. Z. a. E. Dimethyl Nitrosuccinate. Organic Syntheses 1977, 57, 60.
    286. Potthast, A.; Rosenau, T.; Buchner, R.; Röder, T.; Ebner, G.; Bruglachner, H.; Sixta, H.; Kosma, P. The cellulose solvent system N,N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 2002, 9 (1), 41-53.
    287. Zhang, C.; Liu, R. G.; Xiang, J. F.; Kang, H. L.; Liu, Z. J.; Huang, Y. Dissolution Mechanism of Cellulose in N,N-Dimethylacetamide/Lithium Chloride: Revisiting through Molecular Interactions. J Phys Chem B 2014, 118 (31), 9507-9514.
    288. Bai, Z.; Fan, N.; Ju, Z.; Sun, C.; Qian, Y. LiMn2O4 nanorods synthesized by MnOOH template for lithium-ion batteries with good performance. Mater Lett 2012, 76, 124-126.
    289. Yi, T.-F.; Hu, X.-G. Preparation and characterization of sub-micro LiNi0.5−xMn1.5+xO4 for 5V cathode materials synthesized by an ultrasonic-assisted co-precipitation method. J Power Sources 2007, 167 (1), 185-191.
    290. Li, Q.; Li, G.; Fu, C.; Luo, D.; Fan, J.; Xie, D.; Li, L. Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide. J. Mater. Chem. A 2015, 3 (19), 10592-10602.
    291. Simonin, L.; Colin, J.-F.; Ranieri, V.; Canévet, E.; Martin, J.-F.; Bourbon, C.; Baehtz, C.; Strobel, P.; Daniel, L.; Patoux, S. In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries. J Mater Chem 2012, 22 (22), 11316.
    292. Meng, Y. S.; Ceder, G.; Grey, C. P.; Yoon, W. S.; Jiang, M.; Bréger, J.; Shao-Horn, Y. Cation Ordering in Layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2(0 ≤x≤1/2) Compounds. Chem Mater 2005, 17 (9), 2386-2394.
    293. Zhang, G. Q.; Lou, X. W. Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors. Sci Rep-Uk 2013, 3.
    294. Rui, X. H.; Zhao, X. X.; Lu, Z. Y.; Tan, H. T.; Sim, D. H.; Hng, H. H.; Yazami, R.; Lim, T. M.; Yan, Q. Y. Olivine-Type Nanosheets for Lithium Ion Battery Cathodes. Acs Nano 2013, 7 (6), 5637-5646.
    295. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon Nanotube Battery Anodes. Nano Lett 2009, 9 (11), 3844-3847.
    296. Wang, H. K.; Rogach, A. L. Hierarchical SnO2 Nanostructures: Recent Advances in Design, Synthesis, and Applications. Chem Mater 2014, 26 (1), 123-133.
    297. Cai, Y.; Wang, H. E.; Huang, S. Z.; Jin, J.; Wang, C.; Yu, Y.; Li, Y.; Su, B. L. Hierarchical Nanotube-Constructed Porous TiO2-B Spheres for High Performance Lithium Ion Batteries. Sci Rep-Uk 2015, 5.
    298. Wang, M.; Yang, Y.; Zhang, Y. Synthesis of micro-nano hierarchical structured LiFePO(4)/C composite with both superior high-rate performance and high tap density. Nanoscale 2011, 3 (10), 4434-9.
    299. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 2014, 257, 421-443.
    300. Song, H.-K.; Lee, K. T.; Kim, M. G.; Nazar, L. F.; Cho, J. Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries. Adv Funct Mater 2010, 20 (22), 3818-3834.
    301. Gao, Y. A.; Li, L.; Peng, H.; Wei, Z. D. Surfactant-Assisted Sol-Gel Synthesis of Nanostructured Ruthenium-Doped Lithium Iron Phosphate as a Cathode for Lithium-Ion Batteries. Chemelectrochem 2014, 1 (12), 2146-2152.
    302. Ding, Y. H.; Ren, H. M.; Huang, Y. Y.; Chang, F. H.; He, X.; Fen, J. Q.; Zhang, P. Co-precipitation synthesis and electrochemical properties of graphene supported LiMn1/3Ni1/3Co1/3O2 cathode materials for lithium-ion batteries. Nanotechnology 2013, 24 (37).
    303. Su, D. W.; Kim, H. S.; Kim, W. S.; Wang, G. X. Mesoporous Nickel Oxide Nanowires: Hydrothermal Synthesis, Characterisation and Applications for Lithium-Ion Batteries and Supercapacitors with Superior Performance. Chem-Eur J 2012, 18 (26), 8224-8229.
    304. Dou, H.; Nie, P.; MacFarlane, D. R. Mechano-chemical synthesis of nanostructured FePO4/MWCNTs composites as cathode materials for lithium-ion batteries. J Mater Chem A 2014, 2 (45), 19536-19541.
    305. Zhang, X.; Du, Y. Gelatin assisted wet chemistry synthesis of high quality β-FeOOH nanorods anchored on graphene nanosheets with superior lithium-ion battery application. RSC Adv. 2016, 6 (21), 17504-17509.
    306. Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; Maglia, F.; Lupart, S.; Lamp, P.; Shao-Horn, Y. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J Phys Chem Lett 2015, 6 (22), 4653-72.
    307. Park, Y. S.; Lee, S. M. Effects of particle size on the thermal stability of lithiated graphite anode. Electrochim Acta 2009, 54 (12), 3339-3343.
    308. Jo, M.; Hong, Y. S.; Choo, J.; Cho, J. Effect of LiCoO2 Cathode Nanoparticle Size on High Rate Performance for Li-Ion Batteries. J Electrochem Soc 2009, 156 (6), A430-A434.
    309. Xu, G. L.; Wang, Q.; Fang, J. C.; Xu, Y. F.; Li, J. T.; Huang, L.; Sun, S. G. Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries. J Mater Chem A 2014, 2 (47), 19941-19962.
    310. Reddy, S. N.; Nanda, S.; Hegde, U. G.; Hicks, M. C.; Kozinski, J. A. Ignition of hydrothermal flames. Rsc Adv 2015, 5 (46), 36404-36422.
    311. De Yoreo, J. J.; Vekilov, P. G. Principles of crystal nucleation and growth. Rev Mineral Geochem 2003, 54, 57-93.
    312. Yu, D. Y. W.; Yanagida, K. Structural Analysis of Li2MnO3 and Related Li-Mn-O Materials. J Electrochem Soc 2011, 158 (9), A1015-A1022.
    313. Wang, D. P.; Belharouak, I.; Zhou, G. W.; Amine, K. Synthesis of Lithium and Manganese-Rich Cathode Materials via an Oxalate Co-Precipitation Method. J Electrochem Soc 2013, 160 (5), A3108-A3112.
    314. Zhao, Y. J.; Wang, S. J.; Ren, W. F.; Wu, R. Storage Characteristics and Surface Basicity Properties of Li-Rich Cathode Materials Used in Lithium Ion Batteries. J Electrochem Soc 2013, 160 (1), A82-A86.
    315. Shen, C. H.; Wang, Q.; Fu, F.; Huang, L.; Lin, Z.; Shen, S. Y.; Su, H.; Zheng, X. M.; Xu, B. B.; Li, J. T.; Sun, S. G. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: in situ XRD characterization. ACS Appl Mater Interfaces 2014, 6 (8), 5516-24.
    316. Lanz, P.; Sommer, H.; Schulz-Dobrick, M.; Novák, P. Oxygen release from high-energy xLi2MnO3·(1−x)LiMO2 (M=Mn, Ni, Co): Electrochemical, differential electrochemical mass spectrometric, in situ pressure, and in situ temperature characterization. Electrochim Acta 2013, 93, 114-119.
    317. Gu, M.; Genc, A.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J.-G.; Browning, N. D.; Liu, J.; Wang, C. Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2for Li-Ion Batteries. Chem Mater 2013, 25 (11), 2319-2326.
    318. Zheng, J. M.; Zhang, Z. R.; Wu, X. B.; Dong, Z. X.; Zhu, Z.; Yang, Y. The Effects of AlF[sub 3] Coating on the Performance of Li[Li[sub 0.2]Mn[sub 0.54]Ni[sub 0.13]Co[sub 0.13]]O[sub 2] Positive Electrode Material for Lithium-Ion Battery. J Electrochem Soc 2008, 155 (10), A775.
    319. Wu, Y.; Manthiram, A. High Capacity, Surface-Modified Layered Li[Li[sub (1−x)∕3]Mn[sub (2−x)∕3]Ni[sub x∕3]Co[sub x∕3]]O[sub 2] Cathodes with Low Irreversible Capacity Loss. Electrochemical and Solid-State Letters 2006, 9 (5), A221.
    320. Myung, S.-T.; Izumi, K.; Komaba, S.; Yashiro, H.; Bang, H. J.; Sun, Y.-K.; Kumagai, N. Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2as Positive Electrode Materials for Lithium-Ion Secondary Batteries. The Journal of Physical Chemistry C 2007, 111 (10), 4061-4067.
    321. Uzun, D. Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery. Solid State Ionics 2015, 281, 73-81.
    322. Li, X.; Xie, Z.; Liu, W.; Ge, W.; Wang, H.; Qu, M. Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochim Acta 2015, 174, 1122-1130.
    323. Kim, S.-M.; Jin, B.-S.; Lee, S.-M.; Kim, H.-S. Effects of the Fluorine-Substitution and Acid Treatment on the Electrochemical Performances of 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 Cathode Material for Li-Ion Battery. Electrochim Acta 2015, 171, 35-41.
    324. Li, L.; Song, B. H.; Chang, Y. L.; Xia, H.; Yang, J. R.; Lee, K. S.; Lu, L. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J Power Sources 2015, 283, 162-170.
    325. Choi, W.; Manthiram, A. Factors Controlling the Fluorine Content and the Electrochemical Performance of Spinel Oxyfluoride Cathodes. J Electrochem Soc 2007, 154 (8), A792.
    326. Tsuyoshi Nakajima, H. G. Advanced Fluoride-Based Materials for Energy Conversion. Elsevier: 2015.
    327. Moulder, J. F. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, Perkin-Elmer Corporation: Eden Prairie, 1992.
    328. Rivière, J. C. M., S. Handbook of Surface and Interface Analysis Methods for Problem-Solving. CRC Press: Boca Raton, 2009; Vol. Second Edition.
    329. Nakanishi, K. Inlrared Absorption Spectroscopy. Wiley-Liss, Inc.: 1963.
    330. Kim, J.; Hong, Y.; Ryu, K. S.; Kim, M. G.; Cho, J. Washing Effect of a LiNi[sub 0.83]Co[sub 0.15]Al[sub 0.02]O[sub 2] Cathode in Water. Electrochemical and Solid-State Letters 2006, 9 (1), A19.
    331. Wakihara, M.; Li, G.; Ikuta, H. Cathode Active Materials with a Three-dimensional Spinel Framework. 1998, 26-48.
    332. Wu, F.; Li, N.; Su, Y.; Zhang, L.; Bao, L.; Wang, J.; Chen, L.; Zheng, Y.; Dai, L.; Peng, J.; Chen, S. Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett 2014, 14 (6), 3550-5.
    333. Yang, C.; Zhang, Q.; Ding, W.; Zang, J.; Lei, M.; Zheng, M.; Dong, Q. Improving the electrochemical performance of layered lithium-rich cathode materials by fabricating a spinel outer layer with Ni3+. J. Mater. Chem. A 2015, 3 (14), 7554-7559.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE