簡易檢索 / 詳目顯示

研究生: 羅元宏
Yuan-Hung Lo
論文名稱: 利用澱粉吸附區域及血漿凝集素發展新穎性細菌檢測系統
Development of a novel bacterial detection system by engineering of starch binding domain and plasma lectin
指導教授: 張大慈
Dah-Tsyr Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 64
中文關鍵詞: 澱粉吸附區血漿凝集素細菌檢測系統
外文關鍵詞: starch binding domain, plasma lectin, bacterial detection system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 格蘭氏陰性菌(Gram negative bacteria)細胞壁上的酯多醣(lipopolysaccharide),又稱為內毒素(endotoxin),相對於蛋白質而言是一種熱源(pyrogen)以及非常穩定的分子,在極端的溫度以及酸鹼值下仍具有生物活性,此外,酯多醣並不能像蛋白質一樣容易用烘乾或是加熱的方法去除乾淨,而內毒素進入動物體內會造成嚴重的敗血症(septicaemia),甚至使病患在幾小時內喪命。 為了發展出細菌和內毒素檢測試劑,本篇研究利用嗜甲醇酵母菌(Pichia pastoris)成功表現出重組蛋白質ALT2,ALT2由胺基端的米根黴菌澱粉吸附區域(Rhizopus oryzae starch-binding domain, RoSBD)、米根黴菌葡萄糖水解酵素連結片段(Rhizopus oryzae glucoamylase linker, Linker)以及與羧基端的台灣種類馬蹄蟹血液中的血漿凝集素2(Taiwanese Tachypleus tridentatus , TPL2)組成。先前的研究證明,TPL2對於內毒素的O-antigen部位具有高度結合力。本篇研究發現連結片段不只將RoSBD和TPL2區隔開,而且解決的重組蛋白質會被蛋白質水解脢水解的瓶頸。此外,重組蛋白質ALT2中的澱粉吸附區域能夠使重組蛋白質經由吸附澱粉的方式快速純化,利用澱粉作為蛋白質純化吸附材質,不僅可以降低純化成本,而且操作上安全又方便。更近一步研究發現,重組蛋白質ALT2中的TPL2仍然具有辨識格蘭氏陰性菌E. coli的活性。因此,重組蛋白質ALT2不但可以降低工業上生產成本,未來也具有潛力發展成為診斷不同種類細菌或內毒素的檢測試劑。


    中文摘要 I Abstract I Acknowledgement III Table of Contents IV List of Figures VI List of Tables VII Chapter 1 Introduction 1 Chapter 2 Materials and Methods 4 2.1 Microbial strains and plasmids 4 2.2 Culture media composition 4 2.3 Plasmid constructs 5 2.4 Competent cell preparation and transformation 7 2.5 Check colonies by in situ PCR 8 2.6 Site-directed mutagenesis 8 2.7 Yeast transformation 8 2.8 Extraction of P. pichia genomic DNA 9 2.9 Expression of AT2 in P. pastoris 9 2.10 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 10 2.11 Western blot analysis 10 2.12 Purification of AT2 by amylase resin chromatography 11 2.13 Purification of AT2 by starch 12 2.14 Identification of various SBD monoclonal antibodies for ELISA assay 12 2.15 Bacterial binding assay 13 2.16 Determination of N-linked glycosylation 14 Chapter 3 Results 15 3.1 Expression and secretion of TPL2 and AT2 in P. pastoris GS115 15 3.2 Degradation of recombinant AT2 by proteolysis 16 3.3 The critical role of Rhizopus oryzae glucoamylase linker 17 3.4 Recombinant ALT2 was heavily glycosylated by N-linked glycans 18 3.5 Bacterial binding activity of AT2 and ALT2 19 3.6 Purification of recombinant fusion TPL2 20 3.6.1 Purification of AT2 using amylose resin chromatography 20 3.6.2 Purification of AT2 using corn starch by centrifugation 21 3.7 Purification of fusion ALT2 using corn starch by centrifugation 22 3.8 Condition optimization for expression of AT2 22 3.8.1 pH and temperature effects 23 3.8.2 Pre-induction of osmotic stress effect 24 3.8.3 Induction media composition effect 24 3.9 Determination of degradation sites on recombinant AT2 25 3.10 Multiple gene copy number effect 26 Chapter 4 Discussion 28 Figures 33 Tables 53 Appendix 58 References 59

    1 Cereghino, J. L. and Cregg, J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24, 45-66
    2 Chen, C. C., , Wu, P. H., Huang, C. T. and Cheng, K. J. (2004) A Pichia pastoris fermentation strategy for enhancing the heterologous expression of a Escherichia coli phytase. Enz Microb Technol 35, 315-320
    3 Resina, D., Serrano, A., Valero, F. and Ferrer, P. (2004) Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J Biotechnol 109, 103-113
    4 Aoki, H., Nazmul Ahsan, M. and Watabe, S. (2003) Heterologous expression in Pichia pastoris and single-step purification of a cysteine proteinase from northern shrimp. Protein Expr Purif 31, 213-221
    5 Ning, D., Junjian, X., Xunzhang, W., Wenyin, C., Qing, Z., Kuanyuan, S., Guirong, R., Xiangrong, R., Qingxin, L. and Zhouyao, Y. (2003) Expression, purification, and characterization of humanized anti-HBs Fab fragment. J Biochem 134, 813-817
    6 Craveiro, R. B., Ramalho, J. D., Chagas, J. R., Wang, P. H., Casarini, D., Pesquero, J. L., Araujo, R. C. and Pesquero, J. B. (2006) High expression of human carboxypeptidase M in Pichia pastoris: purification and partial characterization. Braz J Med Biol Res 39, 211-217
    7 Lee, C. Y., Nakano, A., Shiomi, N., Lee, E. K. and Katoh, S. (2003) Effects of substrate feed rates on heterologous protein expression by Pichia pastoris in DO-stat fed-batch fermentation. Enz Microb Technol 33, 358-365
    8 Macauley-Patrick, S., Fazenda, M. L., McNeil, B. and Harvey, L. M. (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22, 249-270
    9 Tuite, M. F. (1992) Strategies for the genetic manipulation of Saccharomyces cerevisiae. Crit Rev Biotechnol 12, 157-188
    10 Tschopp, J. F., Brust, P. F., Cregg, J. M., Stillman, C. A. and Gingeras, T. R. (1987) Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res 15, 3859-3876
    11 Couderc, R., and Baratti, J. (1980) Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agric. Biol. Chem. 44, 2279-2289
    12 Outchkourov, N. S., Stiekema, W. J. and Jongsma, M. A. (2002) Optimization of the expression of equistatin in Pichia pastoris. Protein Expr Purif 24, 18-24
    13 Vassileva, A., Chugh, D. A., Swaminathan, S. and Khanna, N. (2001) Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 21, 71-80
    14 Sears, I. B., O'Connor, J., Rossanese, O. W. and Glick, B. S. (1998) A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast 14, 783-790
    15 Briand, L., Perez, V., Huet, J. C., Danty, E., Masson, C. and Pernollet, J. C. (1999) Optimization of the production of a honeybee odorant-binding protein by Pichia pastoris. Protein Expr Purif 15, 362-369
    16 Koganesawa, N., Aizawa, T., Masaki, K., Matsuura, A., Nimori, T., Bando, H., Kawano, K. and Nitta, K. (2001) Construction of an expression system of insect lysozyme lacking thermal stability: the effect of selection of signal sequence on level of expression in the Pichia pastoris expression system. Protein Eng 14, 705-710
    17 Raemaekers, R. J., de Muro, L., Gatehouse, J. A. and Fordham-Skelton, A. P. (1999) Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur J Biochem 265, 394-403
    18 Kowalski, J. M., Parekh, R. N., Mao, J. and Wittrup, K. D. (1998) Protein folding stability can determine the efficiency of escape from endoplasmic reticulum quality control. J Biol Chem 273, 19453-19458
    19 Cregg, J. M., Cereghino, J. L., Shi, J. and Higgins, D. R. (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16, 23-52
    20 Sreekrishna, K., Brankamp, R. G., Kropp, K. E., Blankenship, D. T., Tsay, J. T., Smith, P. L., Wierschke, J. D., Subramaniam, A. and Birkenberger, L. A. (1997) Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 190, 55-62
    21 Walls, E. A., Berkson, J. and Smith, S. A. (2002) The horseshoe crab, Limulus polyphemus: 200 million years of existence, 100 years of study. Reviews in Fisheries Science 10, 39-73
    22 Kawabata, S. and Tsuda, R. (2002) Molecular basis of non-self recognition by the horseshoe crab tachylectins. Biochim Biophys Acta 1572, 414-421
    23 Medzhitov, R. and Janeway, C., Jr. (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173, 89-97
    24 Iwanaga, S. (2002) The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 14, 87-95
    25 Chiou, S. T., Chen, Y. W., Chen, S. C., Chao, C. F. and Liu, T. Y. (2000) Isolation and characterization of proteins that bind to galactose, lipopolysaccharide of Escherichia coli, and protein A of Staphylococcus aureus from the hemolymph of Tachypleus tridentatus. J Biol Chem 275, 1630-1634
    26 Chen, S. C., Yen, C. H., Yeh, M. S., Huang, C. J. and Liu, T. Y. (2001) Biochemical properties and cDNa cloning of two new lectins from the plasma of Tachypleus tridentatus: Tachypleus plasma lectin 1 and 2+. J Biol Chem 276, 9631-9639
    27 Kuo, T. H., Chuang, S. C., Chang, S. Y. and Liang, P. H. (2006) Ligand specificities and structural requirements of two Tachypleus plasma lectins for bacterial trapping. Biochem J 393, 757-766
    28 Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., Roepstorff, P. and Svensson, B. (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543, 275-293
    29 Coutinho, P. M. and Reilly, P. J. (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins 29, 334-347
    30 Takahashi, T., Kato, K., Ikegami, Y. and Irie, M. (1985) Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J Biochem 98, 663-671
    31 Rodriguez-Sanoja, R., Oviedo, N. and Sanchez, S. (2005) Microbial starch-binding domain. Curr Opin Microbiol 8, 260-267
    32 Wu, S. and Letchworth, G. J. (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 36, 152-154
    33 Kobayashi, K., Kuwae, S., Ohya, T., Ohda, T., Ohyama, M., Ohi, H., Tomomitsu, K. and Ohmura, T. (2000) High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. J Biosci Bioeng 89, 55-61
    34 Werten, M. W. and de Wolf, F. A. (2005) Reduced proteolysis of secreted gelatin and Yps1-mediated alpha-factor leader processing in a Pichia pastoris kex2 disruptant. Appl Environ Microbiol 71, 2310-2317
    35 Bretthauer, R. K. and Castellino, F. J. (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30 ( Pt 3), 193-200
    36 Bretthauer, R. K. (2003) Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. Trends Biotechnol 21, 459-462
    37 Duman, J. G., Miele, R. G., Liang, H., Grella, D. K., Sim, K. L., Castellino, F. J. and Bretthauer, R. K. (1998) O-Mannosylation of Pichia pastoris cellular and recombinant proteins. Biotechnol Appl Biochem 28 ( Pt 1), 39-45
    38 Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60, 512-538
    39 Curvers, S., Brixius, P., Klauser, T., Thommes, J., Weuster-Botz, D., Takors, R. and Wandrey, C. (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol Prog 17, 495-502
    40 Li, Z., Xiong, F., Lin, Q., d'Anjou, M., Daugulis, A. J., Yang, D. S. and Hew, C. L. (2001) Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastoris. Protein Expr Purif 21, 438-445
    41 Shi, X., Karkut, T., Chamankhah, M., Alting-Mees, M., Hemmingsen, S. M. and Hegedus, D. (2003) Optimal conditions for the expression of a single-chain antibody (scFv) gene in Pichia pastoris. Protein Expr Purif 28, 321-330
    42 Blackwell, J. R. and Horgan, R. (1991) A novel strategy for production of a highly expressed recombinant protein in an active form. FEBS Lett 295, 10-12
    43 Shiba, Y., Fukui, F., Ichikawa, K., Serizawa, N. and Yoshikawa, H. (1998) Process development for high-level secretory production of carboxypeptidase Y by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50, 34-41
    44 Kang, H. A., Choi, E. S., Hong, W. K., Kim, J. Y., Ko, S. M., Sohn, J. H. and Rhee, S. K. (2000) Proteolytic stability of recombinant human serum albumin secreted in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53, 575-582
    45 B.H. Chung, a. K. S. P. (1997) Simple approach to reducing proteolysis during secretory production of human parathyroid hormone in Saccharomyces cerevisiae. Biotechnol. Bioeng. 57, 245–249
    46 Fuller, R. S., Brake, A. and Thorner, J. (1989) Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A 86, 1434-1438
    47 Zhu, Y. S., Zhang, X. Y., Cartwright, C. P. and Tipper, D. J. (1992) Kex2-dependent processing of yeast K1 killer preprotoxin includes cleavage at ProArg-44. Mol Microbiol 6, 511-520
    48 Gagnon-Arsenault, I., Tremblay, J. and Bourbonnais, Y. (2006) Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEMS Yeast Res 6, 966-978
    49 Ledgerwood, E. C., Brennan, S. O., Cawley, N. X., Loh, Y. P. and George, P. M. (1996) Yeast aspartic protease 3 (Yap3) prefers substrates with basic residues in the P2, P1 and P2' positions. FEBS Lett 383, 67-71
    50 Kerry-Williams, S. M., Gilbert, S. C., Evans, L. R. and Ballance, D. J. (1998) Disruption of the Saccharomyces cerevisiae YAP3 gene reduces the proteolytic degradation of secreted recombinant human albumin. Yeast 14, 161-169
    51 Liu, S. H., Chou, W. I., Sheu, C. C. and Chang, M. D. (2005) Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations. Biochem Biophys Res Commun 326, 817-824
    52 Mansur, M., Cabello, C., Hernandez, L., Pais, J., Varas, L., Valdes, J., Terrero, Y., Hidalgo, A., Plana, L., Besada, V., Garcia, L., Lamazares, E., Castellanos, L. and Martinez, E. (2005) Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris. Biotechnol Lett 27, 339-345
    53 Luo, H. Y., Huang, H. Q., Bai, Y. G., Wang, Y. R., Yang, P. L., Meng, K., Yuan, T. Z. and Yao, B. (2006) [Improving phytase expression by increasing the gene copy number of appA-m in Pichia pastoris]. Sheng Wu Gong Cheng Xue Bao 22, 528-533
    54 Zhao, H. L., Xue, C., Wang, Y., Li, X. Y., Xiong, X. H., Yao, X. Q. and Liu, Z. M. (2007) Circumventing the heterogeneity and instability of human serum albumin-interferon-alpha2b fusion protein by altering its orientation. J Biotechnol 131, 245-252
    55 Zhao, H. L., Xue, C., Wang, Y., Duan, Q. F., Xiong, X. H., Yao, X. Q. and Liu, Z. M. (2008) Disruption of Pichia pastoris PMR1 gene decreases its folding capacity on human serum albumin and interferon-alpha2b fusion protein. Yeast 25, 279-286
    56 Helenius, A. and Aebi, M. (2001) Intracellular functions of N-linked glycans. Science 291, 2364-2369
    57 Takeuchi, H., Kato, K., Hassan, H., Clausen, H. and Irimura, T. (2002) O-GalNAc incorporation into a cluster acceptor site of three consecutive threonines. Distinct specificity of GalNAc-transferase isoforms. Eur J Biochem 269, 6173-6183
    58 Katakura, Y., Ametani, A., Totsuka, M., Nagafuchi, S. and Kaminogawa, S. (1999) Accelerated secretion of mutant beta-lactoglobulin in Saccharomyces cerevisiae resulting from a single amino acid substitution. Biochim Biophys Acta 1432, 302-312
    59 Lin, S. C., Liu, W. T., Liu, S. H., Chou, W. I., Hsiung, B. K., Lin, I. P., Sheu, C. C. and Dah-Tsyr Chang, M. (2007) Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem 8, 9
    60 Saito, T., Kawabata, S., Hirata, M. and Iwanaga, S. (1995) A novel type of limulus lectin-L6. Purification, primary structure, and antibacterial activity. J Biol Chem 270, 14493-14499
    61 Okino, N., Kawabata, S., Saito, T., Hirata, M., Takagi, T. and Iwanaga, S. (1995) Purification, characterization, and cDNA cloning of a 27-kDa lectin (L10) from horseshoe crab hemocytes. J Biol Chem 270, 31008-31015
    62 Inamori, K., Saito, T., Iwaki, D., Nagira, T., Iwanaga, S., Arisaka, F. and Kawabata, S. (1999) A newly identified horseshoe crab lectin with specificity for blood group A antigen recognizes specific O-antigens of bacterial lipopolysaccharides. J Biol Chem 274, 3272-3278
    63 Saito, T., Hatada, M., Iwanaga, S. and Kawabata, S. (1997) A newly identified horseshoe crab lectin with binding specificity to O-antigen of bacterial lipopolysaccharides. J Biol Chem 272, 30703-30708
    64 Rini, J. M. (1995) Lectin structure. Annu Rev Biophys Biomol Struct 24, 551-577

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE