簡易檢索 / 詳目顯示

研究生: 蘇克諦
Bal, Sukhdeep Singh
論文名稱: 在灌注加權成像(PWI)中的選擇性圖像分割和組織風險評估
Selective Image Segmentation and Tissue at Risk Assessment in Perfusion Weighted Imaging
指導教授: 楊梵孛
Yang, Fan-pei Gloria
口試委員: N/A
Alpers, Andreas
N/A
Colquitt, Daniel
彭家勛
Peng, Giia Sheun
N/A
Wu, Junjie
許靖涵
Hsu, Ching-Han
學位類別: 博士
Doctor
系所名稱: 教務處 - 跨院國際博士班學位學程
International Intercollegiate PhD Program
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 144
中文關鍵詞: 圖像分割電腦斷層掃描核磁共振灌注加權成像
外文關鍵詞: PWI
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 灌注加權成像(PWI) , 是一種非侵入式的磁振造影(MR)/電腦斷層造影檢查(CT)技術,用於評估各種血液動力學參數以檢驗腦區的血流狀態。這些參數通常用於定位中風病人的半影區或高風險的組織,透過再灌流療法進行搶救。某些電波與掃描器軟體所預估腦灌流參數的成像管道與分割方法有關。本論文著重於發展腦灌流參數估計與分割方法的影像分析路徑。我們聚焦於腦灌流權重影像上的動脈區域分割以及低對比度、非均質強度和非平滑邊緣影像上的腫瘤分割等困難問題。
    我們首先在變分框架中開發動脈區域的分割模型。我們提出一套新的模型將幾何限制融入到距離函數當中。這套修正模型採用在距離項中的離散總變異,並通過最小化凸函數的能量來定位動脈區域,優於先前的選擇性分割方式,這些方式通常採用成本函數或基於叢集的方法。這種提升使得本模型能有效選擇識別高風險組織上表現良好的動脈區域。另一項研究調查是否將血液動力學模型擬合到從動脈分割獲得的動脈輸入函數(Arterial input function,AIF)並在選擇AIF時最小化部分體積效果,是否能改善對中風患者的核心和半影區的測定的估計。

    在本論文的後半部分,我們提出了一套選擇性分割的高效率的架構,使用新區域力項和基於離散總變異公式的測地距離逞罰項。本研究所提出的模型是使用者獨立的,並允許在具有非均質、非平滑和粗糙邊緣的腫瘤影像和醫療影像中進行精確的分割。本研究另闢一章,專門討論將變分分割方法與深度學習整合。儘管近年來深度學習技術非常受歡迎,深度學習技術經常受到需要大量標籤數據集的限制。我們示範了如何使用變分方法作為半監督(或非監督)訓練演算法中的損失函數來補充標籤,以進行腦腫瘤的分割。

    磁振造影(MR)
    電腦斷層造影(CT)
    動脈輸入函數(AIF)


    ABSTRACT

    Perfusion-weighted imaging (PWI) is a noninvasive Magnetic Resonance (MR)/Computed
    Tomography (CT) technique that assesses various hemodynamic parameters to examine
    blood flow in brain regions. These parameters are used in stroke patients to locate the
    penumbra or the tissue at risk, which can be salvaged with reperfusion therapies. Certain
    artefacts are associated with the imaging pipeline and segmentation methods used in scanner
    software’s to estimate perfusion parameters. The focus of this thesis is the development of
    an image analysis pipeline for perfusion parameter estimation and segmentation models. We
    concentrate on difficult problems such as arterial region segmentation on perfusion weighted
    images and tumor segmentation on images with low contrast, in-homogeneous intensity, and
    non-smooth edges.

    We begin with developing an arterial region segmentation model in the variational framework.
    We propose a new model in which geometric constraints are incorporated into a
    distance function. The modified model employs discrete total variation in the distance term
    and locates arterial regions by minimizing the energy of a convex functional, outperforming
    previous selective segmentation works that typically employ either a cost function or
    a clustering-based approach. This enhancement enables our model to effectively select an
    arterial region that performs well in identifying tissue at risk. Another work investigates
    whether fitting a hemodynamic model to the Arterial input function (AIF) obtained from
    arterial segmentation and minimizing the partial volume effect during AIF selection improves
    volumetric estimation of core and penumbra in stroke patients.

    In the second half of this thesis, we propose an efficient framework for selective segmentation
    using a new region force term and a geodesic distance penalty based on a discrete TV
    formulation. The proposed model is user-independent and allows for precise segmentation in
    tumor images and medical images with non-homogeneous, non-smooth, and scraggy boundary edges. A chapter is dedicated to integrating the variational segmentation method with deep learning. Despite being extremely popular recently, deep learning techniques are frequently constrained by the need for sizable sets of labelled data. We demonstrate how labels can be supplemented by using a variational method as a loss function in a semi-supervised (or unsupervised) training algorithm for brain tumor segmentation.

    Contents Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1 Introduction 13 1.1 Project Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2 Perfusion Weighted Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Image Processing and Image Segmentation . . . . . . . . . . . . . . . . . . 17 1.4 Chapters of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Mathematical Preliminaries 22 2.1 Linear Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Inverse Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 Regularisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 Variation of a Functional . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Discretisation of Partial Differential Equations . . . . . . . . . . . . . . . . . 31 2.4.1 Finite Difference Schemes . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5.1 Numerical methods to solve Linear Systems of Equations . . . . . . . 34 2.5.2 Numerical methods to solve Non-Linear Systems of Equations . . . . 36 3 Review of Segmentation Models 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 Variational Segmentation approach . . . . . . . . . . . . . . . . . . . 44 3.2 Global Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 Mumford and Shah Model . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 Chan-Vese Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.3 Level set Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4 Convex version of Chan Vese Model . . . . . . . . . . . . . . . . . . 52 3.3 Selective Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.1 Geodesic Active Contours . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.2 Gout et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.3 Badshah and Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.4 Rada and Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.5 Spencer and Chen Model . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.6 Convex Liu et.al . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.7 Roberts Chen Convex Geodesic Selective Model . . . . . . . . . . . . 59 3.3.8 Additive Operator Splitting . . . . . . . . . . . . . . . . . . . . . . . 62 4 Arterial Input Function Segmentation based on a Contour Geodesic model for Tissue at Risk identification in Ischemic Stroke 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.1 Proposed contour based AIF Segmentation method . . . . . . . . . . 67 4.2.2 Purposed Matrix analysis to find the potential AIF within the contour 70 4.2.3 Perfusion Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.4 Statistical analysis and Perfusion parameter estimation . . . . . . . . 71 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 Statistical analysis of Curve Characteristics . . . . . . . . . . . . . . 72 4.3.2 Perfusion maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4.1 AIF and contour based models . . . . . . . . . . . . . . . . . . . . . 79 4.4.2 Tissue at risk and limitations . . . . . . . . . . . . . . . . . . . . . . 80 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Partial Volume Effects correction and Curve fitted Arterial Input Function for Core and Penumbra estimation 81 5.1 Partial volume affect correction for Arterial Input Function (AIF) . . . . . . 83 5.1.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2 Core and Penumbra estimation using Deep learning based AIF in association with clinical measures in Computed Tomography Perfusion (CTP) . . . . . . 95 5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Selective Geodesic Variational Segmentation Model with new Region force104 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Review of Selective Segmentation Model . . . . . . . . . . . . . . . . . . . . 106 6.3 Purposed Selective Segmentation Model . . . . . . . . . . . . . . . . . . . . 108 6.3.1 Mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.4.1 Test 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.4.2 Quantitative comparisons . . . . . . . . . . . . . . . . . . . . . . . . 121 6.4.3 Test 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.4.4 Test 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7 Deep Learning Segmentation and Future Work 126 7.1 Unsupervised Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.1.2 Deep Learning Implementation . . . . . . . . . . . . . . . . . . . . . 127 7.1.3 Predicted Results from Deep learning network . . . . . . . . . . . . . 129 7.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    Bibliography
    1. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. volume 9351, pages 234–241, 10 2015. 

    2. Fernando Calamante. Arterial input function in perfusion mri: A comprehensive re- view. Progress in Nuclear Magnetic Resonance Spectroscopy, 74:1–32, 2013. 

    3. Sukhdeep Singh Bal, Ke Chen, Fan-Pei Gloria Yang, and Giia-Sheun Peng. Arte- rial input function segmentation based on a contour geodesic model for tissue at risk identification in ischemic stroke. Medical Physics, 49(4):2475–2485, 2022. 

    4. Shengyu Fan, Yueyan Bian, Erling Wang, Yan Kang, Danny J. J. Wang, Qi Yang, and Xunming Ji. An automatic estimation of arterial input function based on multi-stream 3d cnn. Frontiers in Neuroinformatics, 13, 2019. 

    5. Leif Ostergaard, Robert M. Weisskoff, David A. Chesler, Carsten Gyldensted, and Bruce R. Rosen. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. part i: Mathematical approach and statistical analysis. Magnetic Resonance in Medicine, 36(5):715–725, 1996. 

    6. Sukhdeep Singh Bal, Fan Pei Gloria Yang, Yueh-Feng Sung, Ke Chen, Jiu-Haw Yin, and Giia-Sheun Peng. Optimal scaling approaches for perfusion mri with distorted arterial input function (aif) in patients with ischemic stroke. Brain Sciences, 12(1), 2022. 

    7. Philip A. Barber, Andrew M. Demchuk, Jinjin Zhang, and Alastair M. Buchan. Valid- ity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. The Lancet, 355:1670–1674, 2000. 

    8. Fanpei Yang, Sukhdeep Singh Bal Bal, Yueh-Feng Sung, and Giia-Sheun Peng. Math- ematical framework of deconvolution algorithms for quantification of perfusion param- eters. Acta neurologica Taiwanica, 29(3):79—85, September 2020. 

    9. Fanpei Yang, Sukhdeep Singh Bal Bal, Yueh-Feng Sung, and Giia-Sheun Peng. Math- ematical framework of deconvolution algorithms for quantification of perfusion param- eters. Acta neurologica Taiwanica, 29(3):79—85, September 2020. 


    10. R. Wirestam, L. Knutsson, J. Risberg, S. B ̈orjesson, E.-M. Larsson, L. Gustafson, U. Passant, and F. St ̊ahlberg. Attempts to improve absolute quantification of cerebral blood flow in dynamic susceptibility contrast magnetic resonance imaging: a simplified t1-weighted steady-state cerebral blood volume approach. Acta Radiologica, 48(5):550– 556, 2007. PMID: 17520432. 

    11. Denis Peruzzo, Alessandra Bertoldo, Francesca Zanderigo, and Claudio Cobelli. Au- tomatic selection of arterial input function on dynamic contrast-enhanced mr images. Computer Methods and Programs in Biomedicine, 104(3):e148–e157, 2011. 

    12. Suk Jae Kim, Jeong Pyo Son, Sookyung Ryoo, Mi-Ji Lee, Jihoon Cha, Keon Ha Kim, Gyeong-Moon Kim, Chin-Sang Chung, Kwang Ho Lee, Pyoung Jeon, and Oh Young Bang. A novel magnetic resonance imaging approach to collateral flow imaging in ischemic stroke. Annals of Neurology, 76(3):356–369, 2014. 

    13. Johannes Kaesmacher, Panagiotis Chaloulos-Iakovidis, Leonidas Panos, Pasquale Mor- dasini, Patrik Michel, Steven D. Hajdu, Marc Ribo, Manuel Requena, Christian Maegerlein, Benjamin Friedrich, Vincent Costalat, Amel Benali, Laurent Pierot, Matthias Gawlitza, Joanna Schaafsma, Vitor Mendes Pereira, Jan Gralla, and Urs Fischer. Mechanical thrombectomy in ischemic stroke patients with alberta stroke program early computed tomography score 0–5. Stroke, 50(4):880–888, 2019. 

    14. Nida M. Zaitoun and Musbah J. Aqel. Survey on image segmentation techniques. Procedia Computer Science, 65:797–806, 2015. International Conference on Communi- cations, management, and Information technology (ICCMIT’2015). 

    15. Michael Roberts, Ke Chen, and Klaus L. Irion. A convex geodesic selective model for image segmentation. Journal of Mathematical Imaging and Vision, 61(4):482–503, May 2019. 

    16. Mohamed T. Bennai, Zahia Guessoum, Smaine Mazouzi, St ́ephane Cormier, and Mo- hamed Mezghiche. Multi-agent medical image segmentation: A survey. Computer Methods and Programs in Biomedicine, 232:107444, 2023. 

    17. E. S. Brown, T. Chan, and X. Bresson. Completely convex formulation of the chan-vese image segmentation model. International Journal of Computer Vision, 98:103–121, 2011. 

    18. Liam Burrows, Ke Chen, and Francesco Torella. Selective segmentation of a feature that has two distinct intensities. Journal of Algorithms & Computational Technology, 15:17483026211007776, 2021. 

    19. Laurent Condat. Discrete total variation: New definition and minimization. SIAM Journal on Imaging Sciences, 10(3):1258–1290, 2017.
    20. N. Badshah and Ke Chen. Image selective segmentation under geometrical constraints using an active contour approach. Communications in Computational Physics, 7:759– 778, 2009. 

    21. Noor Badshah, Ke Chen, Haider Ali, and Ghulam Murtaza. Coefficient of variation based image selective segmentation model using active contours. East Asian Journal on Applied Mathematics, 2(2):150–169, 2012. 

    22. Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79(1):12–49, 1988. 

    23. Chunxiao Liu, Michael Kwok-Po Ng, and Tieyong Zeng. Weighted variational model for selective image segmentation with application to medical images. Pattern Recognition, 76:367–379, 2018. 

    24. Jack A. Spencer and Ke Chen. A convex and selective variational model for image segmentation. Communications in Mathematical Sciences, 13:1453–1472, 2015. 

    25. Jacques Hadamard. Sur les probl`emes aux d ́eriv ́ees partielles et leur signification physique. Princeton University Bulletin, page 49–52, 1902. 

    26. A. N. Tikhonov and V. IA. Arsenin. Solutions of ill-posed problems / Andrey N. Tikhonov and Vasiliy Y. Arsenin ; translation editor, Fritz John. Winston ; distributed solely by Halsted Press Washington : New York, 1977. 

    27. V. Klema and A. Laub. The singular value decomposition: Its computation and some applications. IEEE Transactions on Automatic Control, 25(2):164–176, 1980. 

    28. Leonid Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60:259–268, 11 1992. 

    29. Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, second edition, 2003. 

    30. Sandip Mazumder. Chapter 3 - solution to a system of linear algebraic equations. In Sandip Mazumder, editor, Numerical Methods for Partial Differential Equations, pages 103–167. Academic Press, 2016. 

    31. Ranjana Dwivedi and Vinay Kumar Srivastava. 12 - fundamental optimization meth- ods for machine learning. In Tilottama Goswami and G.R. Sinha, editors, Statistical Modeling in Machine Learning, pages 227–247. Academic Press, 2023. 

    32. J. Weickert, B.M.T.H. Romeny, and M.A. Viergever. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3):398–410, 1998. 

    33. Tom Goldstein, Ernie Esser, and Richard Baraniuk. Adaptive primal-dual hybrid gradient methods for saddle-point problems. 05 2013. 

    34. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. 

    35. Wei Deng and Wotao Yin. On the global and linear convergence of the generalized alternating direction method of multipliers. Journal of Science and Computation, 66(3):889–916, mar 2016. 

    36. Daniel O’Connor and Lieven Vandenberghe. On the equivalence of the primal-dual hybrid gradient method and douglas–rachford splitting. Mathematical Programming, 179:1–24, 08 2018. 

    37. David Mumford and Jayant Shah. Optimal approximations by piecewise smooth func- tions and associated variational problems. Communications on Pure and Applied Math- ematics, 42(5):577–685, 1989. 

    38. T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266–277, 2001. 

    39. Christian Gout, Carole Guyader, and Luminita Vese. Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numerical Algorithms, 39:155–173, 01 2005. 

    40. Xiangrong Wang and Jieyu Zhao. Image segmentation using improved potts model. In 2008 Fourth International Conference on Natural Computation, volume 7, pages 352–356, 2008. 

    41. Ke Wei, Ke Yin, Xue-Cheng Tai, and Tony Chan. New region force for variational models in image segmentation and high dimensional data clustering. Annals of Math- ematical Sciences and Applications, 3, 04 2017. 

    42. Andreas Weinmann and Martin Storath. Iterative Potts and Blake–Zisserman mini- mization for the recovery of functions with discontinuities from indirect measurements. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2176):20140638, 2015. 

    43. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In Proceedings of IEEE International Conference on Computer Vision, pages 694–699, 1995. 

    44. Muthukrishnan R. Edge detection techniques for image segmentation. International journal of computer science and information technology, 3:259–267, 12 2011. 

    45. Lavdie Rada. A new variational model with dual level set functions for selective segmentation. Communications in Computational Physics, 12, 07 2012. 

    46. Jack A. Spencer and Ke Chen. A convex and selective variational model for image 
segmentation. Communications in Mathematical Sciences, 13:1453–1472, 2015. 

    47. Luigi Ambrosio, Nicola Fusco, and John E. Hutchinson. Higher integrability of the gra- dient and dimension of the singular set for minimisers of the Mumford–Shah functional. Calculus of Variations and Partial Differential Equations, 16:187–215, 2003. 

    48. Laurent Condat and Peter Richta ́rik. Randprox: Primal-dual optimization algorithms with randomized proximal updates, 2022. 

    49. Xiaohao Cai, Raymond Chan, and Tieyong Zeng. Image segmentation by convex approximation of the Mumford-Shah model. UCLA CAM Report, 01 2012. 

    50. Mila Nikolova, Selim Esedoglu, and Tony Chan. Algorithms for finding global mini- mizers of image segmentation and denoising models. SIAM Journal of Applied Math- ematics, 66:1632–1648, 01 2006. 

    51. Abdul K. Jumaat Ke Chen. A reformulated convex and selective variational image segmentation model and its fast multilevel algorithm. Numerical Mathematics: Theory, Methods and Applications, 12(2):403–437, 2018. 

    52. Lavdie Rada and Ke Chen. Improved selective segmentation model using one level-set. Journal of Algorithms & Computational Technology, 7(4):509–540, 2013. 

    53. J. Weickert, B.M.T.H. Romeny, and M.A. Viergever. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3):398–410, 1998. 

    54. Fernando Calamante. Arterial input function in perfusion MRI: A comprehensive review. Progress in Nuclear Magnetic Resonance Spectroscopy, 74:1–32, 2013. 

    55. L Ostergaard, AG Sorensen, KK Kwong, RM Weisskoff, C Gyldensted, and BR Rosen. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. part ii: Experimental comparison and preliminary results. Magnetic reso- nance in medicine, 36(5):726—736, November 1996. 

    56. Fernando Calamante, David G. Gadian, and Alan Connelly. Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value de- composition. Magnetic Resonance in Medicine, 44(3):466–473, 2000. 

    57. Matus Straka, Gregory W. Albers, and Roland Bammer. Real-time diffusion- perfusion mismatch analysis in acute stroke. Journal of Magnetic Resonance Imaging, 32(5):1024–1037, 2010. 

    58. Shengyu Fan, Yueyan Bian, Erling Wang, Yan Kang, Danny J. J. Wang, Qi Yang, and Xunming Ji. An automatic estimation of arterial input function based on multi-stream 3d cnn. Frontiers in Neuroinformatics, 13:49, 2019. 

    59. Nils Daniel Forkert, Jens Fiehler, Thorsten Ries, Till Illies, Dietmar M̈oller, Heinz Handels, and Dennis S ̈aring. Reference-based linear curve fitting for bolus arrival time estimation in 4d mra and mr perfusion-weighted image sequences. Magnetic Resonance in Medicine, 65(1):289–294, 2011. 

    60. Denis Peruzzo, Alessandra Bertoldo, Francesca Zanderigo, and Claudio Cobelli. Au- tomatic selection of arterial input function on dynamic contrast-enhanced mr images. Computer Methods and Programs in Biomedicine, 104(3):e148–e157, 2011. 

    61. Matus Straka, Gregory Albers, and Roland Bammer. Real-time diffusion-perfusion mismatch analysis in acute stroke. Journal of magnetic resonance imaging : JMRI, 32:1024–37, 11 2010. 

    62. Kim Mouridsen, Søren Christensen, Louise Gyldensted, and Leif Østergaard. Auto- matic selection of arterial input function using cluster analysis. Magnetic Resonance in Medicine, 55(3):524–531, 2006. 

    63. A. Gregory Sorensen, William A. Copen, Leif Østergaard, Ferdinando S. Buonanno, R. Gilberto Gonzalez, Guy Rordorf, Bruce R. Rosen, Lee H. Schwamm, Robert M. Weisskoff, and Walter J. Koroshetz. Hyperacute stroke: Simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology, 210(2):519–527, 1999. PMID: 10207439. 

    64. Jessy J. Mouannes-Srour, Wanyong Shin, Sameer A. Ansari, Michael C. Hurley, Parmede Vakil, Bernard R. Bendok, John L. Lee, Colin P. Derdeyn, and Timothy J. Carroll. Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion dsc mr imaging. Magnetic Resonance in Medicine, 68(2):495–506, August 2012. 

    65. Cory Lorenz, Thomas Benner, Poe Jou Chen, Chloe Joan Lopez, Hakan Ay, Ming Wang Zhu, Nina M. Menezes, Hannu Aronen, Jari Karonen, Yawu Liu, Juho Nuutinen, and A. Gregory Sorensen. Automated perfusion-weighted mri using local- ized arterial input functions. Journal of Magnetic Resonance Imaging, 24(5):1133– 1139, 2006. 

    66. Laurent Condat. Discrete total variation: New definition and minimization. SIAM Journal on Imaging Sciences, 10(3):1258–1290, 2017. 

    67. Michael Roberts, Ke Chen, and Klaus L. Irion. A convex geodesic selective model for image segmentation. Journal of Mathematical Imaging and Vision, 61(4):482–503, May 2019. 

    68. T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266–277, 2001. 

    69. N. Badshah and Ke Chen. Image selective segmentation under geometrical constraints using an active contour approach. Communications in Computational Physics, 7:759– 778, 2009. 

    70. E. S. Brown, T. Chan, and X. Bresson. Completely convex formulation of the chan-vese image segmentation model. International Journal of Computer Vision, 98:103–121, 2011. 

    71. Meng Tang, Tian Chen, Xiao Zhang, and Xiao Huang. Gre t2* -weighted mri: Prin- ciples and clinical applications. BioMed research international, 2014:312142, 04 2014. 

    72. Fernando Calamante, Morten Mørup, and Lars Kai Hansen. Defining a local arterial input function for perfusion mri using independent component analysis. Magnetic Resonance in Medicine, 52(4):789–797, 2004. 

    73. Sukhdeep Singh Bal, Fan Pei Gloria Yang, Yueh-Feng Sung, Ke Chen, Jiu-Haw Yin, and Giia-Sheun Peng. Optimal scaling approaches for perfusion mri with distorted arterial input function (aif) in patients with ischemic stroke. Brain Sciences, 12(1), 2022. 

    74. Ona Wu, Leif Østergaard, Walter J. Koroshetz, Lee H. Schwamm, Joanie O’Donnell, Pamela W. Schaefer, Bruce R. Rosen, Robert M. Weisskoff, and A. Gregory Sorensen. Effects of tracer arrival time on flow estimates in mr perfusion-weighted imaging. Mag- netic Resonance in Medicine, 50(4):856–864, 2003. 

    75. M.R. Smith, H. Lu, S. Trochet, and R. Frayne. Removing the effect of svd algorithmic artifacts present in quantitative mr perfusion studies. Magnetic Resonance in Medicine, 51(3):631–634, 2004. 

    76. A reformulated convex and selective variational image segmentation model and its fast multilevel algorithm. Numerical Mathematics: Theory, Methods and Applications, 12(2):403–437, 2018. 

    77. Anthony Winder, Christopher D. d’Esterre, Bijoy K. Menon, Jens Fiehler, and Nils D. Forkert. Automatic arterial input function selection in ct and mr perfusion datasets using deep convolutional neural networks. Medical Physics, 47(9):4199–4211, 2020. 

    78. U. Arioz, K.K. Oguz, U. Baysal, and A. Cila. Multislice brain mapping and quantifica- tion of perfusion mri data. In Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005., pages 9–12, 2005. 

    79. Pedro Ramos-Cabrer, Francisco Campos, Toma ́s Sobrino, and Jos ́e Castillo. Targeting the ischemic penumbra. Stroke, 42(1 suppl 1):S7–S11, 2011. 

    80. M Kasam. Su-e-e-05: The role of conventional mr physics, resting state functional mr physics and mr spectroscopy for the in-situ monitoring of infarct and peri-infarct tissue and for the precise diagnosis of acute ischemic stroke. Medical Physics, 40(6Part4):118– 118, 2013. 

    81. Jean J. Chen, Michael R. Smith, and Richard Frayne. The impact of partial-volume ef- fects in dynamic susceptibility contrast magnetic resonance perfusion imaging. Journal of Magnetic Resonance Imaging, 22(3):390–399, 2005. 

    82. Bruce C.V. Campbell, Søren Christensen, Christopher R. Levi, Patricia M. Desmond, Geoffrey A. Donnan, Stephen M. Davis, and Mark W. Parsons. Comparison of com- puted tomography perfusion and magnetic resonance imaging perfusion-diffusion mis- match in ischemic stroke. Stroke, 43(10):2648–2653, 2012. 

    83. Fernando Calamante, David G. Gadian, and Alan Connelly. Delay and dispersion effects in dynamic susceptibility contrast mri: Simulations using singular value decom- position. Magnetic Resonance in Medicine, 44(3):466–473, 2000. 

    84. Jean J. Chen, Michael R. Smith, and Richard Frayne. The impact of partial-volume ef- fects in dynamic susceptibility contrast magnetic resonance perfusion imaging. Journal of Magnetic Resonance Imaging, 22(3):390–399. 

    85. Adam E. Hansen, Henrik Pedersen, Egill Rostrup, and Henrik B.W. Larsson. Partial volume effect (pve) on the arterial input function (aif) in t1-weighted perfusion imag- ing and limitations of the multiplicative rescaling approach. Magnetic Resonance in Medicine, 62(4):1055–1059, 2009. 

    86. Andr ́e Ahlgren, Ronnie Wirestam, Emelie Lind, Freddy St ̊ahlberg, and Linda Knutsson. A linear mixed perfusion model for tissue partial volume correction of perfusion estimates in dynamic susceptibility contrast mri: Impact on absolute quan- tification, repeatability, and agreement with pseudo-continuous arterial spin labeling. Magnetic Resonance in Medicine, 77(6):2203–2214, 2017. 

    87. Linda Knutsson, Emelie Lindgren, Andr ́e Ahlgren, Matthias J.P. van Osch, Karin Markenroth Bloch, Yulia Surova, Freddy St ̊ahlberg, Danielle van Westen, and Ronnie Wirestam. Reduction of arterial partial volume effects for improved absolute quantifi- cation of dsc-mri perfusion estimates: Comparison between tail scaling and prebolus administration. Journal of Magnetic Resonance Imaging, 41(4):903–908, 2015. 

    88. Hiroshi Matsuda, Takashi Ohnishi, Takashi Asada, Zhi-jie Li, Hidekazu Kanetaka, Et- suko Imabayashi, Fumiko Tanaka, and Seigo Nakano. Correction for partial-volume ef- fects on brain perfusion spect in healthy men. Journal of Nuclear Medicine, 44(8):1243– 1252, 2003. 

    89. Matus Straka, Gregory W. Albers, and Roland Bammer. Real-time diffusion- perfusion mismatch analysis in acute stroke. Journal of Magnetic Resonance Imaging, 32(5):1024–1037, 2010. 

    90. Nils Daniel Forkert, Jens Fiehler, Thorsten Ries, Till Illies, Dietmar M ̈oller, Heinz Handels, and Dennis S ̈aring. Reference-based linear curve fitting for bolus arrival time estimation in 4d mra and mr perfusion-weighted image sequences. Magnetic Resonance in Medicine, 65(1):289–294, 2011. 

    91. V.G. Kiselev. On the theoretical basis of perfusion measurements by dynamic suscep- tibility contrast mri. Magnetic Resonance in Medicine, 46(6):1113–1122, 2001. 

    92. K A Rempp, G Brix, F Wenz, C R Becker, F Gu ̈ckel, and W J Lorenz. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced mr imaging. Radiology, 193(3):637–641, 1994. PMID: 7972800. 

    93. Ona Wu, Leif Østergaard, Robert M. Weisskoff, Thomas Benner, Bruce R. Rosen, and A. Gregory Sorensen. Tracer arrival timing-insensitive technique for estimating flow in mr perfusion-weighted imaging using singular value decomposition with a block- circulant deconvolution matrix. Magnetic Resonance in Medicine, 50(1):164–174, 2003. 

    94. Linda Knutsson, Freddy St ̊ahlberg, and Ronnie Wirestam. Absolute quantification of perfusion using dynamic susceptibility contrast mri: pitfalls and possibilities. Magma (New York, N.Y.), 23(1):1—21, February 2010. 

    95. Birgitte F. Kjølby, Irene K. Mikkelsen, Michael Pedersen, Leif Østergaard, and Va- lerij G. Kiselev. Analysis of partial volume effects on arterial input functions using gradient echo: A simulation study. Magnetic Resonance in Medicine, 61(6):1300–1309, 2009. 

    96. Guillaume Duhamel, Gottfried Schlaug, and David C. Alsop. Measurement of arterial input functions for dynamic susceptibility contrast magnetic resonance imaging using echoplanar images: Comparison of physical simulations with in vivo results. Magnetic Resonance in Medicine, 55(3):514–523, 2006. 

    97. Kenya Murase, Keiichi Kikuchi, Hitoshi Miki, Teruhiko Shimizu, and Junpei Ikezoe. Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced mr imaging. Journal of Magnetic Resonance Imaging, 13(5):797–806, 2001. 

    98. Matthias J.P. van Osch, Evert-jan P.A. Vonken, Chris J.G. Bakker, and Max A. Viergever. Correcting partial volume artifacts of the arterial input function in quanti- tative cerebral perfusion mri. Magnetic Resonance in Medicine, 45(3):477–485, 2001. 

    99. Anthony Winder, Christopher D. d’Esterre, Bijoy K. Menon, Jens Fiehler, and Nils D. Forkert. Automatic arterial input function selection in ct and mr perfusion datasets using deep convolutional neural networks. Medical Physics, 47(9):4199–4211, 2020. 

    100. Matthias J.P. van Osch, Jeroen van der Grond, and Chris J.G. Bakker. Partial vol- ume effects on arterial input functions: Shape and amplitude distortions and their correction. Journal of Magnetic Resonance Imaging, 22(6):704–709, 2005. 

    101. I.C. van der Schaaf, Evertjan Vonken, Annet Waaijer, Birgitta K. Velthuis, Marcel J. Quist, and Thijs L J van Osch. Influence of partial volume on venous output and arterial input function. AJNR. American journal of neuroradiology, 27 1:46–50, 2006. 

    102. Angelos Konstas, Gregory Goldmakher, and Micheal Lev. Theoretic basis and technical implementations of ct perfusion in acute ischemic stroke, part 2: Technical implemen- tations. American Journal of Neuroradiology, 30(5):885–892, 2009. 

    103. Jose Bernal, Maria d.C. Vald ́es-Hern ́andez, Javier Escudero, Anna K. Heye, Eleni Sakka, Paul A. Armitage, Stephen Makin, Rhian M. Touyz, Joanna M. Wardlaw, and Michael J. Thrippleton. A four-dimensional computational model of dynamic contrast- enhanced magnetic resonance imaging measurement of subtle blood-brain barrier leak- age. NeuroImage, 230:117786, 2021. 

    104. N.D. Forkert, P. Kaesemann, A. Treszl, S. Siemonsen, B. Cheng, H. Handels, J. Fiehler, and G. Thomalla. Comparison of 10 ttp and tmax estimation techniques for mr perfusion-diffusion mismatch quantification in acute stroke. American Journal of Neu- roradiology, 34(9):1697–1703, 2013. 

    105. H Tei, S Uchiyama, and T Usui. Clinical-diffusion mismatch defined by nihss and aspects in non-lacunar anterior circulation infarction. Journal of neurology, 254(3):340—346, March 2007. 

    106. Zhe Cheng, Xiaokun Geng, Gary B Rajah, Jie Gao, Linlin Ma, Fenghai Li, Huishan Du, and Yuchuan Ding. Nihss consciousness score combined with aspects is a favorable predictor of functional outcome post endovascular recanalization in stroke patients. Aging and disease, 12(2):415—424, April 2021. 

    107. Harold Adams, Patricia Davis, Enrique Leira, Kevin Chang, and Birgitte Bendixen. Baseline nih stroke scale score strongly predicts outcome after stroke: A report of the trial of org 10172 in acute stroke treatment (toast). Neurology, 53(1):126—131, July 1999. 

    108. Patrick D. Lyden. Using the national institutes of health stroke scale: A cautionary tale. Stroke, 48:513–519, 2017. 

    109. Maxim Mokin, Christopher T. Primiani, Adnan H. Siddiqui, and A. Turk. Aspects (alberta stroke program early ct score) measurement using hounsfield unit values when selecting patients for stroke thrombectomy. Stroke, 48:1574–1579, 2017.
    110. William J. Powers, Colin P. Derdeyn, Jos ́e Biller, Christopher S. Coffey, Brian L. Hoh, Edward C. Jauch, Karen C. Johnston, S. Claiborne Johnston, Alexander A. Khalessi, Chelsea S. Kidwell, James F. Meschia, Bruce Ovbiagele, and Dileep R. Yavagal. 2015 american heart association/american stroke association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke, 46(10):3020–3035, 2015.
    111. Jiaming Liu, Yu Sun, Xiaojian Xu, and Ulugbek S. Kamilov. Image restoration us- ing total variation regularized deep image prior. In ICASSP 2019 - 2019 IEEE In- ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7715–7719, 2019.
    112. Huiyi Hu, Justin Sunu, and Andrea Bertozzi. Multi-class graph mumford-shah model for plume detection using the mbo scheme. volume 8932, pages 209–222, 01 2015.
    113. Antonio Criminisi, Toby Sharp, and Andrew Blake. Geos: Geodesic image segmenta- tion. volume 5302, pages 99–112, 10 2008.
    114. Liu XiangYang, Yong YuJie, and Zhang XiaoFeng. Image segmentation based on geodesic distance combined with region and edge gradient. In 2020 4th International Conference on Computer Science and Artificial Intelligence, CSAI 2020, page 91–96, New York, NY, USA, 2021. Association for Computing Machinery.
    115. Xue Bai and Guillermo Sapiro. Geodesic matting: A framework for fast interactive image and video segmentation and matting (preprint). International Journal of Com- puter Vision, 82:113–132, 04 2009.
    116. Alexis Protiere and Guillermo Sapiro. Interactive image segmentation via adaptive weighted distances. IEEE Transactions on Image Processing, 16(4):1046–1057, 2007.
    117. Jing Yuan, Egil Bae, and Xuecheng Tai. A study on continuous max-flow and min- cut approaches. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 2217–2224, 2010.
    118. Ivar Ekeland and Roger T ́emam. Convex Analysis and Variational Problems. Society for Industrial and Applied Mathematics, 1999.
    119. Ernie Esser, Xiaoqun Zhang, and Tony F. Chan. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences, 3(4):1015–1046, 2010.
    120. Xavier Bresson, Thomas Laurent, David Uminsky, and James H. von Brecht. Multiclass total variation clustering, 2013.
    121. Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40:120–145, 2011.
    122. Mingqiang Zhu and Tony Chan. An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report, 05 2008.
    123. Silvia Bonettini and Valeria Ruggiero. On the convergence of primal–dual hybrid gradient algorithms for total variation image restoration. Journal of Mathematical Imaging and Vision, 44:236–253, 11 2012.
    124. Xiaohao Cai, Raymond Chan, and Tieyong Zeng. A two-stage image segmentation method using a convex variant of the mumford–shah model and thresholding. SIAM Journal on Imaging Sciences, 6(1):368–390, 2013.
    125. Jonathan M. Borwein and Jon D. Vanderwerff. Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and its Appli- cations. Cambridge University Press, 2010.
    126. Dan Luo, Wei Zeng, Jinlong Chen, and Wei Tang. Deep learning for automatic im- age segmentation in stomatology and its clinical application. Frontiers in Medical Technology, 3, 2021.
    127. Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos. Image segmentation using deep learning: A survey, 2020.
    128. Liam Burrows, Ke Chen, and Francesco Torella. Using deep image prior to assist variational selective segmentation deep learning algorithms. Seventeenth International Symposium on Medical Information Processing and Analysis, page 34, 2021.
    129. Liam Burrows, Ke Chen, and Francesco Torella. A deep image prior learning algorithm for joint selective segmentation and registration. Variational Methods in Computer Vision, pages 411–422, 04 2021.
    130. Liam Burrows, Theljani Anis, and Ke Chen. On a variational and convex model of the blake-zisserman type for segmentation of low-contrast and piecewise smooth images. Journal of Imaging, 10 2021.
    131. Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree Kalpathy-Cramer, Keyvan Farahani, Justin Kirby, Yuliya Burren, Nicole Porz, Johannes Slotboom, Roland Wiest, Levente Lanczi, Elizabeth Gerstner, Marc-Andr ́e Weber, Tal Arbel, Brian B. Avants, Nicholas Ayache, Patricia Buendia, D. Louis Collins, Nicolas Cordier, Jason J. Corso, Antonio Criminisi, Tilak Das, Herv ́e Delingette, C ̧ag ̆atay Demiralp, Christopher R. Durst, Michel Dojat, Senan Doyle, Joana Festa, Florence Forbes, Ezequiel Geremia, Ben Glocker, Polina Golland, Xiaotao Guo, Andac Hamamci, Khan M. Iftekharud- din, Raj Jena, Nigel M. John, Ender Konukoglu, Danial Lashkari, Jos ́e Ant ́onio Ma- riz, Raphael Meier, S ́ergio Pereira, Doina Precup, Stephen J. Price, Tammy Riklin Raviv, Syed M. S. Reza, Michael Ryan, Duygu Sarikaya, Lawrence Schwartz, Hoo- Chang Shin, Jamie Shotton, Carlos A. Silva, Nuno Sousa, Nagesh K. Subbanna, Gabor Szekely, Thomas J. Taylor, Owen M. Thomas, Nicholas J. Tustison, Gozde Unal, Flor Vasseur, Max Wintermark, Dong Hye Ye, Liang Zhao, Binsheng Zhao, Darko Zikic, Marcel Prastawa, Mauricio Reyes, and Koen Van Leemput. The multimodal brain tu- mor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging, 34(10):1993–2024, 2015.
    132. Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin Kirby, John Freymann, Keyvan Farahani, and Christos Davatzikos. Advancing the cancer genome atlas glioma mri collections with expert segmentation labels and radiomic features. Scientific Data, 4, 09 2017.
    133. Patricia Clement, Jan Petr, Mathijs B. J. Dijsselhof, Beatriz Padrela, Maurice Paster- nak, Sudipto Dolui, Lina Jarutyte, Nandor Pinter, Luis Hernandez-Garcia, Andrew Jahn, Joost P. A. Kuijer, Frederik Barkhof, Henk J. M. M. Mutsaerts, and Vera C. Keil. A beginner’s guide to arterial spin labeling (asl) image processing. Frontiers in Radiology, 2, 2022.
    134. Deepasree Jaganmohan, Somnath Pan, Chandrasekharan Kesavadas, and Bejoy Thomas. A pictorial review of brain arterial spin labelling artefacts and their po- tential remedies in clinical studies. The Neuroradiology Journal, 34(3):154–168, 2021. PMID: 33283653.

    QR CODE