簡易檢索 / 詳目顯示

研究生: 羅堂宴
Tang-Yan Lo
論文名稱: 仿龍蝦觸鬚操控陣列之控制架構與實現
Control Architecture and Implementation for Lobster Antennules-Like Micro-Array
指導教授: 劉承賢
Dr. Cheng-Hsien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 67
中文關鍵詞: 微機電陣列即時控制
外文關鍵詞: MEMS, Array, Real-Time control, Matlab\Simulink\Stateflow, xPC, CPLD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文針對本實驗室研發之微機電技術—仿龍蝦觸鬚生物體操控裝置LAMA,進行控制架構的設計與實現,此仿生微機電裝置乃利用微致動觸鬚(Actuator fingers)改變生物體周圍流場的方式,來操控生物體本身作微米尺度的運動,是一種非接觸性、非傷害性、低成本、與生物體在尺寸上匹配的操控方式。
    本文首先針對微致動觸鬚推導出動態模型,並定義出操控的頻率,接著使用Matlab / simulink / xPC架構,完成以手/自動兩用的即時驅動控制,可任意調整控制參數,提供使用者具彈性的操控平台。在硬體方面完成有驅動訊號處理電路、CPLD解碼電路及掃瞄位置迴授電路;在軟體方面,完成有最佳路徑搬運演算法程式、Matlab /xPC即時驅動控制模組及掃瞄位置模擬迴授控制模組。


    Abstract
    This research focuses on the controller design and implementation for the MEMS-fabricated biology object manipulation device (LAMA), which has been developed by our research group. The MEMS device utilizes micro actuator fingers to vary the flow field around the target micro-biology for micro-scale manipulation, which is a non-contact, harmless, costless, and scale matching manipulation method.
    In this research, first, I derive the dynamic model of micro actuator and defines the operation frequency. Then, I use Matlab / simulink / xPC to design both manual and automatic real-time controls, which provides users a flexible operation platform with adjustable control parameters. For the hardware, driving signal processing circuit, CPLD decoding circuit and position scanning feedback circuit have been developed in the research. As for software, optimal moving path calculation program, Matlab/xPC real-time control module and scanning position-simulation feedback control module have been developed successfully

    Table of Contents………………………………………………………………………I List of Figures………………………………………………………………………..III List of Tables…………………………………………………………………………VI 1. Introduction…………………………………………………………………………1 1.1 Background and Motivations……………………………………………………...1 1.2 Literature Survey…………………………………………………………………..2 1.3 Thesis Outline……………………………………………………………………...8 2. Driving Principle and System Structure of Biology Object Manipulation Array…..9 2.1 Manipulation of Biology Objects………………………………………………….9 2.1.1 Learn form Nature – Lobster Sniffing…………………………………………...9 2.1.2 Operation of Actuators…………………………………………………………11 2.2 Driving Principles of Micro Actuator Fingers……………………………………13 2.2.1 Driving Voltage………………………………………………………………...13 2.2.2 Dynamic Model………………………………………………………………...15 2.2.3 Operational signals……………………………………………………………..20 2.3 System Structure………………………………………………………………….22 2.3.1 Hardware Selection and Control Implementation……………………………...22 2.3.2 Matlab/xPC Control Sturcture………………………………………………….23 3. Circuit Design and Simulation…………………………………………………….25 3.1 Driving Circuit of Actuator Fingers……………………………………………...25 3.2 Control Circuit of Transport Path………………………………………………...27 3.3 The Feedback Circuit for Position Simulation…………………………………...34 4. Software Implementation and Control Architecture………………………………38 4.1 Optimal Transport Path…………………………………………………………..38 4.2 Scheme of Real-time Control for LAMA Driving……………………………….44 4.2.1 Structure of Real-time Control Module………………………………………..44 4.2.2 Real-time Driving Module……………………………………………………..45 4.2.3 Orientation Module for Driving Signals……………………………………….49 4.2.4 Manual/Automatic Switching Module…………………………………………50 4.2.5 Coding Module for Hardware Driving…………………………………………51 4.2.6 Scanning Feedback Control Module…………………………………………...53 5. Experimental setup and Simulation Results……………………………………….56 5.1 Experimental setup……………………………………………………………….56 5.2 Simulation Results……………………………………………………………….58 6. Conclusions………………………………………………………………………..63 6.1 Achievements…………………………………………………………………….63 6.2 Suggestions for Future Work……………………………………………………..64 References……………………………………………………………………………65 Biography…………………………………………………………………………….67

    [1]M. W. Berns, “Laser Scissors and Tweezers,” Sci. Am., April 1998.
    [2]A. Ashkin and J. M. Dziedzic, “Optical Trapping and Manipulation of Viruses and Bacteria,” Science, vol. 235, pp. 1517-1520, March 1987.
    [3]K. O. Greulich, “Micromanipulation by Light in Biology and Medicine,” Birkhauser Verlat, Basel, pp. 39-87, 1999.
    [4]C. -J. Kim, A. P. Pisano, R. S. Muller, M. G.. Lim, “Polysilicon Microgripper,” Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, pp. 48-51, June 1990.
    [5]C. –J. Kim, A. P. Pisano, R. S. Muller, “Silicon-Processed Overhanging Microgripper,” J. MEMS, vol. 1, no. 3, pp. 31-36, March 1992.
    [6]A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, M. A. Northrup, “A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation,” Tech. Dig., Transducers ’95, pp. 368-371, June 1995.
    [7]J. Ok, M. Chu, C. -J. Kim, “Pneumatically Driven Microcage For Micro-Objects in Biological Liquid,” IEEE Micro Electro Mechanical Systems Workshop, pp. 459-463, February. 1999.
    [8]K.F. Böhringer, 1997, “Programmable Force Fields for Distributed Manipulation, and Their Implementation Using Micro-Fabricated Actuator Arrays,” Ph.D. thesis, Cornell University.
    [9]Yoshio MITA, Andreas KAISER, Bruno Stefanelli, Patrick GARDA, Maurice MILGRAM, Hiroyuki FUJITA, “A Distributed Microactuator Conveyance System With Integrated Controller,” IEEE SMC '99 Conference, vol.1, pp.18-21, October. 1999.
    [10]M. A. R. Kohl, J. R. Koseff, J. P. Crimaldi, M. G. McCay, T. Cooper, M. B. Wiley, P. A. Moore, “Lobster Sniffing: Antennule Design and Hydrodynamic Filtering of Information in an Odor Plume,” Science, vol. 294, pp. 1948-1951., November 2001.
    [11]http://iserver.saddleback.edu/faculty/janderson/lobster.jpg

    [12]J. Goldman, Duke University, Oxford University Express.

    [13]張傑,”仿龍蝦觸鬚之生物體操控裝置,”國立清華大學動力機械工程學系碩士論文,2003.
    [14]M. Elwenspoek, M. Weustink and R. Legtenberg, “Static and Dymamic Properties of Active Joints,”TRANSDUCER,pp412-415,1995.
    [15]李佳達,”生物體操控裝置之設計”,計畫編號NSC 92-2815-C-007-034-E,國科會專題研究報告,02/2004。
    [16]N. Sherwani, Algorithms for VLSI Physical Design Automation, Second Edition Kluwer, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE