簡易檢索 / 詳目顯示

研究生: 張雅梅
Chang, Ya-Mei
論文名稱: ARFIMA 模式中長距相關參數的估計方法: ARMA 近似模型
Estimation of Long-Memory Parameter in ARFIMA Models: ARMA Approximation Approach
指導教授: 徐南蓉
Hsu, Nan-Jung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 38
中文關鍵詞: ARMA長記憶模式參數估計Kullback-Leibler discrepancy
外文關鍵詞: ARMA, long memory, estimation, Kullback-Leibler discrepancy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個新的ARFIMA模型之長距相關參數估計方法。研究中利用Kullback-Leibler discrepancy找出與FI(d)模型最近似的ARMA(1,1)與ARMA(2,2)模型,並利用cubic spline決定出ARMA近似模型中的各個參數與d之關係式。再以此近似模式的概似函數作為長距相關參數d的估計目的函數。我們推導出此新估計量的大樣本性質。且經模擬生成的資料,評估此估計方法在小樣本之下的表現,並與先前的參數估計方法做比較。在實證分析上,以尼羅河水位資料作實例探討。


    A new method for estimating long-memory parameter in ARFIMA Models is proposed based on ARMA approximation. The Kullback-Leibler discrepancy is used to find a best ARMA approximation for a FI(d) model. The performance of the new estimator is investigated and compared to previous methods in finite sample via simulations. The Nile River data are used for illustration.

    1 Introduction 2 ARFIMA Model and its ARMA Approximation 2.1 ARFIMA Models 2.2 ARMA Approximations for FI(d) models 2.3 ARMA Approximations for ARFIMA models 3 Estimation Methods for Long-Memory Parameter 3.1 Classical Estimation Methods 3.2 Proposed Method 4 Numerical Simulation 5 Application 6 Conclusion

    [1]Aydogan, Kursat and Booth, G. Geoffrey (1988), Are there long cycles in common stock returns?, Southern Economic Journal, 141-149.
    [2]Basak, G.K., Chan, N.H. and Palma, W. (2001), The approximation of long-memory process by an ARMA model, Journal of Forecasting, 367-389.
    [3]Beran, J. (1994), Statistics for long-memory process, Chapman and Hall, New York.
    [4]Beran, J. and Terrin, N. (1996), Testing for a change of the long-memory parameter, Biometrika}, 83, No. 3, 627-638.
    [5]Brockwell, P.J. and Davis, R.A. (1987), Time series: Theory and Methods (first edition), Springer, New York.
    [6]Chan, N.H. and Palma, W. (1998), State space modelling for long-memory processes, Ann. Statist., 26, 719-740.
    [7]Diebold, F.X. and Rudebusch, Glenn D. (1989), Long memory and persistence in aggregate output, Journal of Monetary Economics, 24, 189-209.
    [8]Fox, Robert and Taqqu, Murad S. (1986), Large-Sample properties of parameter estimates for strongly dependent stationary Gaussian time series, Ann. Statist., 14, 517-532.
    [9]Geweke, John F. and Porter-Hudak, Susan (1982), The estimation and application of long memory time series models, Journal of Time Series Analysis, 4, 221-238.
    [10]Graf, H.P. (1983), Long-range correlations and estimation of the self-similarity parameter, PhD thesis, ETH Zurich.
    [11]Granger, C.W.J and Joyeux, R. (1980), An introduction to long-range time series models and fractional differencing, J. Time Ser. Anal., 1, 15-30.
    [12]Hosking, J.R.M. (1981), Fractional differencing, Biometrika, 68, 165-176.
    [13]Hosking, J.R.M. (1984), Modelling persistence in hidrological time series using fractional differencing, Water Resources Reserch, 20, 1898-1908.
    [14]Hsu, N.J. and Breidt, F.J. (2002), Bayesian analysis of fractionally integrated ARMA with additive noise, Journal of Forecasting, in press.
    [15]Whittle, P. (1953), Estimation and information in stationary time series, Ark. Mat., 2, 423-434.
    [16]Tsay, Wen-Jen (2000), Long memory story of the real interest rate, Economics Letters, 67, 325-330.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE