研究生: |
張智宏 Chang, Chih-Hung |
---|---|
論文名稱: |
利用RNA干擾進行基因功能分析的高效率篩選策略 An efficient screening strategy for gene functional analysis using RNA interference |
指導教授: |
唐傳義
Tang, Chuan-Yi |
口試委員: |
盧錦隆
葉信宏 林俊淵 韓永楷 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | RNA干擾 、RNA篩選 、siRNA設計 、基因功能分析 、群試 |
外文關鍵詞: | RNA interference, RNAi screening, SiRNA design, Gene functional analysis, Group testing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
RNA干擾(RNAi)常被應用在基因體規模的基因功能篩選上。然而,針對每一個基因做一對一的RNAi分析非常耗費經費與成本。先前的研究已經指出siRNAs也可以影響與其近似互補的RNAs序列,並且這一現象被稱為脫靶效應(off-target effect)。此一效應也說明了,我們可以利用一細心設計的siRNA同時抑制多個基因的表現。
在此論文中,我們提出了一個啟發式演算法(heuristic algorithm)來設計可同時抑制多個基因的siRNAs。並且結合了群試(group testing)的概念,我們也提出了一個策略,以減少在大規模RNAi分析實驗中所需的RNAi實驗次數。為了驗證此一策略的效能,我們以蘭花的表現序列標籤(expressed sequence tag, EST)資料做為測試資料,模擬如何篩選與植物抗病反應相關的轉錄因子(transcription factor)。根據我們的計算,只需94個siRNAs,即足夠對這229個預測出來的轉錄因子進行初步篩選。在這94個siRNAs中,有一siRNAs在計算上可以同時抑制編號15與編號21的轉錄因子(TF15, TF21),而TF15已被證實與植物抗病反應有關,因此,我們利用此一siRNA進行RNAi實驗,以驗證我們所提出的方法之可行性。而實驗結果,不僅確認了此siRNA可以同時抑制TF15與TF21,以及我們的策略可以成功地證實TF15與植物抗病反應有關,同時,我們也發現TF21也與植物抗病反應有關。
我們的計算結果顯示出,比起利用一對一RNAi的篩選,利用較少的實驗也能對全部的基因進行篩選。並且,我們也證實了,我們所提出的策略可以成功地協助找出與某一性徵相關的基因。
RNA interference (RNAi) has been widely applied in genome-scale gene functional screens. Traditional one-on-one RNAi analysis works well but is cost-ineffective and laborious. Previous studies have indicated that siRNAs actually can simultaneously affect RNAs that are near-perfectly complementary to the induced siRNAs, and this phenomenon has been termed as off-target effect. Off-target effect implies that it is possible to silence several genes simultaneously with a carefully designed siRNA.
We first proposed a heuristic algorithm to design suitable siRNAs that can target multiple genes, and then adopted group testing method to present a gene functional analysis strategy. Combining these two work can help to reduce the number of required RNAi experiments in a large-scale RNAi analysis. To verify the efficacy of our strategy, we used the Orchid expressed sequence tag data as a case study to screen the putative transcription factors that are involved in plant disease responses. According to our computation, 94 qualified siRNAs were sufficient to examine all of the predicated 229 transcription factors. In addition, among the 94 computer-designed siRNAs, an siRNA that targets both TF15 (a previously identified transcription factor that is involved in the plant disease-response pathway) and TF21 was introduced into orchids. The experimental results showed that this siRNA can simultaneously silence TF15 and TF21, and application of our strategy successfully confirmed that TF15 is involved in plant defense responses. Interestingly, our second-round analysis, which used an siRNA specific to TF21, indicated that TF21 is a previously unidentified transcription factor that is related to plant defense responses.
Our computational results showed that it is possible to screen all genes with fewer experiments than would be required for the traditional one-on-one RNAi screening. We also verified that our strategy is capable of identifying genes that are involved in a specific phenotype.
[1] Bennetzen, J. L., Kellogg, E. A., Lee, M. and Messing, J. A plant genome initiative. Plant Cell, 10, 4 (Apr 1998), 488-493.
[2] Dong, Y., Burch-Smith, T. M., Liu, Y., Mamillapalli, P. and Dinesh-Kumar, S. P. A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol, 145, 4 (Dec 2007), 1161-1170.
[3] Wilson, R. K., Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F. S., Pasternak, S., Liang, C. Z., Zhang, J. W., Fulton, L., Graves, T. A., Minx, P., Reily, A. D., Courtney, L., Kruchowski, S. S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S. M., Belter, E., Du, F. Y., Kim, K., Abbott, R. M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S. M., Gillam, B., Chen, W. Z., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R. F., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J. K., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L. Y., Wei, S., Kumari, S., Faga, B., Levy, M. J., McMahan, L., Van Buren, P., Vaughn, M. W., Ying, K., Yeh, C. T., Emrich, S. J., Jia, Y., Kalyanaraman, A., Hsia, A. P., Barbazuk, W. B., Baucom, R. S., Brutnell, T. P., Carpita, N. C., Chaparro, C., Chia, J. M., Deragon, J. M., Estill, J. C., Fu, Y., Jeddeloh, J. A., Han, Y. J., Lee, H., Li, P. H., Lisch, D. R., Liu, S. Z., Liu, Z. J., Nagel, D. H., McCann, M. C., SanMiguel, P., Myers, A. M., Nettleton, D., Nguyen, J., Penning, B. W., Ponnala, L., Schneider, K. L., Schwartz, D. C., Sharma, A., Soderlund, C., Springer, N. M., Sun, Q., Wang, H., Waterman, M., Westerman, R., Wolfgruber, T. K., Yang, L. X., Yu, Y., Zhang, L. F., Zhou, S. G., Zhu, Q., Bennetzen, J. L., Dawe, R. K., Jiang, J. M., Jiang, N., Presting, G. G., Wessler, S. R., Aluru, S., Martienssen, R. A., Clifton, S. W., McCombie, W. R. and Wing, R. A. The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 326, 5956 (Nov 20 2009), 1112-1115.
[4] Chandler, V. L. and Brendel, V. The Maize Genome Sequencing Project. Plant Physiol, 130, 4 (Dec 2002), 1594-1597.
[5] Gill, B. S., Appels, R., Botha-Oberholster, A. M., Buell, C. R., Bennetzen, J. L., Chalhoub, B., Chumley, F., Dvorak, J., Iwanaga, M., Keller, B., Li, W., McCombie, W. R., Ogihara, Y., Quetier, F. and Sasaki, T. A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics, 168, 2 (Oct 2004), 1087-1096.
[6] Sasaki, T. and Burr, B. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol, 3, 2 (Apr 2000), 138-141.
[7] Project, I. R. G. S. The map-based sequence of the rice genome. Nature, 436, 7052 (Aug 11 2005), 793-800.
[8] Rounsley, S. D. and Last, R. L. Shotguns and SNPs: how fast and cheap sequencing is revolutionizing plant biology. Plant J, 61, 6 (Mar 2010), 922-927.
[9] Metzker, M. L. Sequencing technologies - the next generation. Nat Rev Genet, 11, 1 (Jan 2010), 31-46.
[10] Imelfort, M. and Edwards, D. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform, 10, 6 (Nov 2009), 609-618.
[11] Liu, J., Huang, S., Peng, X., Liu, W. and Wang, H. Studies on high salt tolerance of transgenic tobacco. Chin J Biotechnol, 11, 4 1995), 275-280.
[12] Abebe, T., Guenzi, A. C., Martin, B. and Cushman, J. C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 131, 4 (Apr 2003), 1748-1755.
[13] Ecker, J. R. and Davis, R. W. Inhibition of gene expression in plant cells by expression of antisense RNA. Proc Natl Acad Sci U S A, 83, 15 (Aug 1986), 5372-5376.
[14] Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 6669 (Feb 19 1998), 806-811.
[15] Brown, J. R. and Sanseau, P. A computational view of microRNAs and their targets. Drug Discov Today, 10, 8 (Apr 15 2005), 595-601.
[16] Dominska, M. and Dykxhoorn, D. M. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci, 123, Pt 8 (Apr 15 2010), 1183-1189.
[17] Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 2 (Jan 23 2004), 281-297.
[18] Ossowski, S., Schwab, R. and Weigel, D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J, 53, 4 (Feb 2008), 674-690.
[19] Keating, C. D., Kriek, N., Daniels, M., Ashcroft, N. R., Hopper, N. A., Siney, E. J., Holden-Dye, L. and Burke, J. F. Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol, 13, 19 (Sep 30 2003), 1715-1720.
[20] Sugimoto, A. High-throughput RNAi in Caenorhabditis elegans: genome-wide screens and functional genomics. Differentiation, 72, 2-3 (Mar 2004), 81-91.
[21] Agaisse, H., Burrack, L. S., Philips, J. A., Rubin, E. J., Perrimon, N. and Higgins, D. E. Genome-wide RNAi screen for host factors required for intracellular bacterial infection. Science, 309, 5738 (Aug 19 2005), 1248-1251.
[22] Furlong, E. E. A functional genomics approach to identify new regulators of Wnt signaling. Dev Cell, 8, 5 (May 2005), 624-626.
[23] McGinnis, K., Chandler, V., Cone, K., Kaeppler, H., Kaeppler, S., Kerschen, A., Pikaard, C., Richards, E., Sidorenko, L., Smith, T., Springer, N. and Wulan, T. Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol, 3922005), 1-24.
[24] Hilson, P., Allemeersch, J., Altmann, T., Aubourg, S., Avon, A., Beynon, J., Bhalerao, R. P., Bitton, F., Caboche, M., Cannoot, B., Chardakov, V., Cognet-Holliger, C., Colot, V., Crowe, M., Darimont, C., Durinck, S., Eickhoff, H., de Longevialle, A. F., Farmer, E. E., Grant, M., Kuiper, M. T., Lehrach, H., Leon, C., Leyva, A., Lundeberg, J., Lurin, C., Moreau, Y., Nietfeld, W., Paz-Ares, J., Reymond, P., Rouze, P., Sandberg, G., Segura, M. D., Serizet, C., Tabrett, A., Taconnat, L., Thareau, V., Van Hummelen, P., Vercruysse, S., Vuylsteke, M., Weingartner, M., Weisbeek, P. J., Wirta, V., Wittink, F. R., Zabeau, M. and Small, I. Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res, 14, 10B (Oct 2004), 2176-2189.
[25] Dietzl, G., Chen, D., Schnorrer, F., Su, K. C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., Couto, A., Marra, V., Keleman, K. and Dickson, B. J. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448, 7150 (Jul 12 2007), 151-156.
[26] Yang, J. P., Fan, W., Rogers, C., Chatterton, J. E., Bliesath, J., Liu, G., Ke, N., Wang, C. Y., Rhoades, K., Wong-Staal, F. and Li, Q. X. A novel RNAi library based on partially randomized consensus sequences of nuclear receptors: identifying the receptors involved in amyloid beta degradation. Genomics, 88, 3 (Sep 2006), 282-292.
[27] Moffat, J., Grueneberg, D. A., Yang, X., Kim, S. Y., Kloepfer, A. M., Hinkle, G., Piqani, B., Eisenhaure, T. M., Luo, B., Grenier, J. K., Carpenter, A. E., Foo, S. Y., Stewart, S. A., Stockwell, B. R., Hacohen, N., Hahn, W. C., Lander, E. S., Sabatini, D. M. and Root, D. E. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124, 6 (Mar 24 2006), 1283-1298.
[28] Consortium, I. H. G. S. Finishing the euchromatic sequence of the human genome. Nature, 431, 7011 (Oct 21 2004), 931-945.
[29] Initiative, T. A. G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 6814 (Dec 14 2000), 796-815.
[30] Sun, D. Q., Melegari, M., Sridhar, S., Rogler, C. E. and Zhu, L. Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques, 41, 1 (Jul 2006), 59-63.
[31] Xia, X. G., Zhou, H. X. and Xu, Z. S. Multiple shRNAs expressed by an inducible pol II promoter can knock down the expression of multiple target genes. Biotechniques, 41, 1 (Jul 2006), 64-68.
[32] Ouyang, B., Yang, T., Li, H., Zhang, L., Zhang, Y., Zhang, J., Fei, Z. and Ye, Z. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot, 58, 3 2007), 507-520.
[33] Liu, H. H., Tian, X., Li, Y. J., Wu, C. A. and Zheng, C. C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14, 5 (May 2008), 836-843.
[34] Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G. and Linsley, P. S. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 21, 6 (Jun 2003), 635-637.
[35] Moffat, J., Reiling, J. H. and Sabatini, D. M. Off-target effects associated with long dsRNAs in Drosophila RNAi screens. Trends Pharmacol Sci, 28, 4 (Apr 2007), 149-151.
[36] Kulkarni, M. M., Booker, M., Silver, S. J., Friedman, A., Hong, P., Perrimon, N. and Mathey-Prevot, B. Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods, 3, 10 (Oct 2006), 833-838.
[37] Du, D. and Hwang, F. Combinatorial group testing and its applications. World Scientific, Singapore ; River Edge, NJ, 2000.
[38] Deng, X. T., Li, G. J., Li, Z. M., Ma, B. and Wang, L. S. A PTAS for distinguishing (Sub)string selection. Lect Notes Comput Sc, 23802002), 740-751.
[39] Wang, L. S. and Zhu, B. H. Efficient Algorithms for the Closest String and Distinguishing String Selection Problems. Frontiers in Algorithmics, Proceedings, 55982009), 261-270.
[40] Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M. and Weigel, D. Specific effects of microRNAs on the plant transcriptome. Dev Cell, 8, 4 (Apr 2005), 517-527.
[41] Haley, B. and Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol, 11, 7 (Jul 2004), 599-606.
[42] Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S. and Khvorova, A. Rational siRNA design for RNA interference. Nat Biotechnol, 22, 3 (Mar 2004), 326-330.
[43] Hsieh, A. C., Bo, R. H., Manola, J., Vazquez, F., Bare, O., Khvorova, A., Scaringe, S. and Sellers, W. R. A library of siRNA duplexes targeting the phosphoinositide 3-kinase pathway: determinants of gene silencing for use in cell-based screens. Nucleic Acids Res, 32, 3 (Feb 2004), 893-901.
[44] Takasaki, S., Kotani, S. and Konagaya, A. An effective method for selecting siRNA target sequences in mammalian cells. Cell Cycle, 3, 6 (Jun 2004), 790-795.
[45] Karimi, M., Inze, D. and Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci, 7, 5 (May 2002), 193-195.
[46] Tian, T., Klaassen, V. A., Soong, J., Wisler, G., Duffus, J. E. and Falk, B. W. Generation of cDNAs specific to lettuce infectious yellows closterovirus and other whitefly-transmitted viruses by RT-PCR and degenerate oligonucleotide primers corresponding to the closterovirus gene encoding the heat shock protein 70 homolog. Phytopathology, 86, 11 (Nov 1996), 1167-1173.
[47] Lu, H. C., Chen, H. H., Tsai, W. C., Chen, W. H., Su, H. J., Chang, D. C. and Yeh, H. H. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol, 143, 2 (Feb 2007), 558-569.
[48] Tsai, W. C., Hsiao, Y. Y., Lee, S. H., Tung, C. W., Wang, D. P., Wang, H. C., Chen, W. H. and Chen, H. H. Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Sci, 170, 3 (Mar 2006), 426-432.
[49] Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. Basic local alignment search tool. J Mol Biol, 215, 3 (Oct 5 1990), 403-410.
[50] Fu, C. H., Chen, Y. W., Hsiao, Y. Y., Pan, Z. J., Liu, Z. J., Huang, Y. M., Tsai, W. C. and Chen, H. H. OrchidBase: a collection of sequences of the transcriptome derived from orchids. Plant Cell Physiol, 52, 2 (Feb 2011), 238-243.
[51] Lu, H. C., Hsieh, M. H., Chen, C. E., Chen, H. H., Wang, H. I. and Yeh, H. H. A high-throughput virus-induced gene-silencing vector for screening transcription factors in virus-induced plant defense response in orchid. Mol Plant Microbe Interact, 25, 6 (Jun 2012), 738-746.
[52] Deng, X., Li, G., Li, Z., Ma, B. and Wang, L. S. Genetic design of drugs without side-effects. Siam J Comput, 32, 4 2003), 1073-1090.
[53] Lanctot, J. K., Li, M., Ma, B., Wang, S. J. and Zhang, L. X. Distinguishing string selection problems. Inform and Comput, 185, 1 (Aug 25 2003), 41-55.
[54] Tang, G., Reinhart, B. J., Bartel, D. P. and Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev, 17, 1 (Jan 1 2003), 49-63.
[55] Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C. and Weigel, D. Control of leaf morphogenesis by microRNAs. Nature, 425, 6955 (Sep 18 2003), 257-263.
[56] Garey, M. R. and Johnson, D. S. Computers and intractability : a guide to the theory of NP-completeness. W. H. Freeman, San Francisco, 1979.
[57] Lovasz, L. Ratio of Optimal Integral and Fractional Covers. Discrete Math, 13, 4 1975), 383-390.
[58] Johnson, D. S. Approximation Algorithms for Combinatorial Problems. J Comput System Sci, 9, 3 1974), 256-278.
[59] Elbashir, S. M., Lendeckel, W. and Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 15, 2 (Jan 15 2001), 188-200.
[60] Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. and Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J, 20, 23 (Dec 3 2001), 6877-6888.
[61] Nykanen, A., Haley, B. and Zamore, P. D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 3 (Nov 2 2001), 309-321.
[62] Hanada, K., Kuromori, T., Myouga, F., Toyoda, T., Li, W. H. and Shinozaki, K. Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis. Genome Biol Evol, 12009), 409-414.
[63] Conant, G. C. and Wagner, A. Duplicate genes and robustness to transient gene knock-downs in Caenorhabditis elegans. Proc Biol Sci, 271, 1534 (Jan 7 2004), 89-96.
[64] Bouche, N. and Bouchez, D. Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol, 4, 2 (Apr 2001), 111-117.
[65] Schwab, R., Ossowski, S., Riester, M., Warthmann, N. and Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18, 5 (May 2006), 1121-1133.