簡易檢索 / 詳目顯示

研究生: 柳岱旼
Liu,Tai-Min
論文名稱: 氧化物奈米結構在過氧化氫檢測上之應用
Applications of Oxide Nanostructure on Sensing Hydrogen Peroxide
指導教授: 呂世源
Lu, Shih-Yuan
口試委員: 衛子健
蔡德豪
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 98
中文關鍵詞: 過氧化氫感測器錫鐵氧化物尖晶石鉑金屬
外文關鍵詞: SnFe2O4, FTO
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 回顧過去許多進行生物感測器的文獻,發現大部分的研究,使用玻璃碳電極(GCE)來做為生物感測器之電極使用,因為操作簡單,可以很容易的將所需研究之觸媒材料,快速滴至GCE電極表面,進行感測活性之測試。因此本研究認為要做為一個理想的生物感測器電極,除了需選用適當的觸媒材料外,有效地將電極進行結構修飾,使觸媒與感測器電極表面間,所形成交界表面形貌,增加其表面積與電子傳遞,勢必能提升其感測效果,更是值得討論的重點。電極表面需具備優異的導電性,將感測反應所產生之電子訊號,快速的導出,並藉由電極表面良好的親水性與高結構表面積,增加與目標待測物接觸的機會。本研究使用過去所發展的電化學表面修飾技術,成功改善市售透明導電玻璃,其親水性與結構表面積不足的問題,提供一個未來取代玻璃碳電極之電極選擇。
    本研究分兩部分進行,第一部分藉過去所發展的電化學表面修飾技術,針對市售透明導電玻璃之表面形貌,進行更深入的研究與討論,以製備出具優異導電性與親水性之多孔洞FTO電極。研究過程發現,於0.07 M SnCl4‧H2O製程濃度下,所製備的表面孔洞結構最為完整,相較於市售FTO玻璃,其粗糙度可從18 nm增加到36 nm左右,接觸角自36.1o下降至4.4o,大幅提升電極表面之親水性,而片電阻值約17.1Ω□-1,仍屬高導電性的規格範圍內。於電化學生物感測實驗部分,選用大家所熟知,針對H2O2具有優異催化分解之Pt貴金屬,負載至多孔洞FTO電極表面,來做為展現其高結構表面積的優勢,相較於市售FTO玻璃,測試結果顯示,孔洞結構越完整之FTO電極,能附著較多且較均勻之Pt顆粒表面形貌,優異的H2O2感測效能(25.8 mA/Mcm2),甚至高於市售FTO玻璃(2.68 mA/Mcm2)的10倍。

    第二部分研究重點,乃利用實驗室過去所開發之界面合成反應法,進行合成一具高催化活性且可取代Pt貴金屬之尖金石氧化物結構,錫鐵氧化物(SnFe2O4)。研究過程發現,使用1.0 M NaOH濃度所製備之錫鐵氧化物,負載至多孔洞FTO電極表面,可獲得具良好的親水性之接觸角4.68o,於 H2O2感測器效果表現,靈敏度高達1027 mA/Mcm2。於過去2005至2015年間,比較使用ITO或FTO做為電化學感測器之電極研究,發現我們所獲得的靈敏度是最高的,甚至可與過去文獻,使用 Pt貴金屬做為觸媒,負載至GCE電極上之感測靈敏度結果,並駕齊驅,由此更加證明,我們所製備之高催化活性之SnFe2O4,具有相當大的潛力,於未來有很大機會能取代Pt貴金屬,成為新一代電化學H2O2生物感測器之電極材料。


    Many researches about biosensors have used Glass Carbon Electrode (GCE) as the host electrode for sensing catalysts, because it is easy to drop the catalysts onto the GCE and used it for sensing. If we want to make an ideal sensor electrode, the most important thing is to choose not only the appropriate catalysts but also the host electrode. Host electrodes need good electric conductivities to rapidly transfer the electronic signals, produced by the sensing reaction. With good hydrophilicity and high interficial areas, the host electrode can enhance the contact with the target components. In this study, we utilized a previously developed technique to modify commercial FTO glass, and improved on the low hydrophilicity and interficial areas of the commercial FTO, providing a choice of substitution for the GCE.
    In the first part of this study, we used a simple electrochemical treatment to modify the commercial FTO glass. After a series of fabrications, we produced porous FTO with an extraordinary conductivity and good hydrophilicity as we concocted the concentration of SnCl4‧H2O to 0.07 M. A well-developed porous structure was acquired. Comparing to the commercial FTO, the porous FTO possessed high porosities and the roughness was enhanced to 18~36 nm. The static contact angle dropped from 36.1 to 4.4o, and the sheet resistance was about 17.1 Ω□-1. We proceeded with the electrochemical sensing for applications in H2O2 sensing through Pt-loading. As a result, the high porosity enabled a uniform distribution of Pt nanoparticles on the FTO pore surface. The porous FTO was good for Pt loading. This sample showed a high sensitivity of 25.8 mA/Mcm2, ten times of that of the commercial FTO (2.68 mA/Mcm2).
    For the second part of the study, by using a one-step carrier solvent assisted interfacial reaction process, we successfully synthesized SnFe2O4 nanocrystals, intended for the replacement of Pt. In the experiment, we adjusted the concentration of NaOH to 1M, so that we can obtain SnFe2O4 nanocrystals, which can catalyze reduction of H2O2. After loading it to the porous FTO electrode surface, the static contact angle is about 4.68o, the sensitivity of sensing H2O2 was up to 1027 mA/Mcm2, which is much higher than most of the number indicated by the references using Pt with FTO and ITO, and GCE as the sensing electrode over the past ten years. But comparing to Pt, SnFe2O4 is not toxic and much cheaper. So this study successfully develops a promising and novel nanomaterial, which is an excellent catalyst, and has a good potential to replace Pt as the sensing catalyst.

    摘要 I Abstract III 致謝 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1-1. 前言 1 1-2. 過氧化氫感測器近況與發展 3 1-3. 研究動機與方向 5 第二章 文獻回顧與理論說明 7 2-1. 電化學過氧化氫感測器之電極基材 7 2-1.1 玻璃碳電極 (GCE) 7 2-1.2 摻雜錫之氧化銦(ITO) 12 2-1.3 摻雜氟之氧化錫(FTO) 19 2-2. 二氧化錫奈米結構之合成 26 2-3. 錫鐵氧化物之合成 35 第三章 實驗內容 40 3-1. 實驗藥品 40 3-2. 儀器設備 44 3-3. 分析儀器 45 3-4. 實驗步驟 50 3-4.1 FTO導電玻璃之清洗方法 50 3-4.2 製備多孔性FTO導電玻璃 51 3-4.3 多元醇還原法製備鉑負載之導電基材及其應用 52 3-4.4 界面法製備錫鐵氧化物負載之導電基材及其應用 54 第四章 結果與討論 56 4-1. 多元醇還原法製備鉑負載多孔性FTO 56 4-1.2 製備多孔性FTO之研究 56 4-1.3 製備不同比例鉑負載多孔性FTO研究 61 4-1.4 過氧化氫之電化學感測分析 65 4-2. 界面反應法製備錫鐵氧化物之過氧化氫感測 71 4-2.1 製備錫鐵氧化物之研究 71 4-2.2 過氧化氫之電化學感測分析 75 第五章 結論 84 第六章 參考文獻 86

    1. 中華民國衛生福利部 Ministry of Health and Welfare 民國102年主要死因分析報告
    2. 中華民國衛生福利部食品藥物管理署
    3. Jose, D.A., et al., Efficient and simple colorimetric fluoride ion sensor based on receptors having urea and thiourea binding sites. Organic letters, 2004. 6(20): p. 3445-3448.
    4. Suehiro, J., G. Zhou, and M. Hara, Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. Journal of Physics D: Applied Physics, 2003. 36(21): p. L109.
    5. Clark, L.C. and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences, 1962. 102(1): p. 29-45.
    6. Hurdis, E. and H. Romeyn Jr, Accuracy of determination of hydrogen peroxide by cerate oxidimetry. Analytical Chemistry, 1954. 26(2): p. 320-325.
    7. Matsubara, C., N. Kawamoto, and K. Takamura, Oxo [5, 10, 15, 20-tetra (4-pyridyl) porphyrinato] titanium (IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst, 1992. 117(11): p. 1781-1784.
    8. Abbas, M., et al., Fluorometric determination of hydrogen peroxide in milk by using a Fenton reaction system. Food chemistry, 2010. 120(1): p. 327-331.
    9. Lu, H., et al., Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013. 101: p. 106-110.
    10. Wang, J., et al., Electrodeposition of gold nanoparticles on indium/tin oxide electrode for fabrication of a disposable hydrogen peroxide biosensor. Talanta, 2009. 77(4): p. 1454-1459.
    11. Jia, N.Q., et al., A Mediatorless Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Immobilized in Tin Oxide Sol‐Gel Film. Analytical letters, 2005. 38(8): p. 1237-1248.
    12. Tseng, K.-S., L.-C. Chen, and K.-C. Ho, Amperometric detection of hydrogen peroxide at a Prussian Blue-modified FTO electrode. Sensors and Actuators B: Chemical, 2005. 108(1): p. 738-745.
    13. Zhao, G., J.-J. Xu, and H.-Y. Chen, Interfacing myoglobin to graphite electrode with an electrodeposited nanoporous ZnO film. Analytical biochemistry, 2006. 350(1): p. 145-150.
    14. Chen, S., et al., Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchimica Acta, 2013. 180(1-2): p. 15-32.
    15. Rodriguez, M. and G. Rivas, Highly selective first generation glucose biosensor based on carbon paste containing copper and glucose oxidase. Electroanalysis, 2001. 13(14): p. 1179-1184.
    16. Miscoria, S.A., G.D. Barrera, and G.A. Rivas, Analytical performance of a glucose biosensor prepared by immobilization of glucose oxidase and different metals into a carbon paste electrode. Electroanalysis, 2002. 14(14): p. 981-987.
    17. Comba, F.N., et al., Glucose biosensing at carbon paste electrodes containing iron nanoparticles. Sensors and Actuators B: Chemical, 2010. 149(1): p. 306-309.
    18. Nieh, C.-H., et al., Amperometric biosensor based on reductive H2O2 detection using pentacyanoferrate-bound polymer for creatinine determination. Analytica chimica acta, 2013. 767: p. 128-133.
    19. Kakhki, S., et al., New robust redox and conducting polymer modified electrodes for ascorbate sensing and glucose biosensing. Electroanalysis, 2013. 25(1): p. 77-84.
    20. Ozoner, S.K., Poly (glycidyl methacrylate‐co‐3‐thienyl‐methylmethacrylate) based working electrodes for hydrogen peroxide biosensing. Journal of Chemical Technology and Biotechnology, 2012. 87(1): p. 146-152.
    21. Wen, D., et al., Pt nanoparticles supported on TiO2 colloidal spheres with nanoporous surface: preparation and use as an enhancing material for biosensing applications. The Journal of Physical Chemistry C, 2009. 113(30): p. 13023-13028.
    22. Wang, L. and E. Wang, A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochemistry Communications, 2004. 6(2): p. 225-229.
    23. Lavanya, N., S. Radhakrishnan, and C. Sekar, Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles. Biosensors and Bioelectronics, 2012. 36(1): p. 41-47.
    24. Lin, C.-Y., et al., Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta, 2010. 82(1): p. 340-347.
    25. Maji, S.K., et al., Nanocrystalline FeS thin film used as an anode in photo-electrochemical solar cell and as hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 2012. 166: p. 726-732.
    26. Welch, C., et al., Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Analytical and Bioanalytical Chemistry, 2005. 382(1): p. 12-21.
    27. Lahiri, P. and S.K. Sengupta, Spinel ferrites as catalysts: a study on catalytic effect of coprecipitated ferrites on hydrogen peroxide decomposition. Canadian journal of chemistry, 1991. 69(1): p. 33-36.
    28. Elmoussaoui, H., et al., New results on Magnetic Properties of Tin-Ferrite Nanoparticles. Journal of superconductivity and novel magnetism, 2012. 25(6): p. 1995-2002.
    29. Cao, G.S., et al., Hydrogen peroxide electrochemical sensor based on Fe3O4 nanoparticles. Micro & Nano Letters, 2014. 9(1): p. 16-18.
    30. Sathish, H., P. Kaul, and V. Prakash, Influence of metal ions on structure and catalytic activity of papain. Indian Journal of Biochemistry and Biophysics, 2000. 37(1): p. 18-27.
    31. Palla, S., et al., Photocatalytic degradation of organic dyes with Sn2+-and Ag+-substituted K3Nb3WO9(PO4)2 under visible light irradiation. Journal of Sol-Gel Science and Technology: p. 1-11.
    32. Atta, N.F. and M.F. El-Kady, Novel poly (3-methylthiophene)/Pd, Pt nanoparticle sensor: Synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids. Sensors and Actuators B: Chemical, 2010. 145(1): p. 299-310.
    33. Tian, N., Z.-Y. Zhou, and S.-G. Sun, Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. The Journal of Physical Chemistry C, 2008. 112(50): p. 19801-19817.
    34. Wang, Z., et al., Electrocatalytic activity of salicylic acid on the platinum nanoparticles modified electrode by electrochemical deposition. Colloids and Surfaces B: Biointerfaces, 2010. 76(1): p. 370-374.
    35. Xiao, Y., H.-X. Ju, and H.-Y. Chen, Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Analytica Chimica Acta, 1999. 391(1): p. 73-82.
    36. Chen, W. and H.L. Pardue, Pseudo-equilibrium approach to the design and use of enzyme-based amperometric biosensors evaluated using a sensor for hydrogen peroxide. Analytica chimica acta, 2000. 409(1): p. 123-130.
    37. Yabuki, S., F. Mizutani, and Y. Hirata, Hydrogen peroxide determination based on a glassy carbon electrode covered with polyion complex membrane containing peroxidase and mediator. Sensors and Actuators B: Chemical, 2000. 65(1): p. 49-51.
    38. Sergeyeva, T., et al., Hydrogen peroxide–sensitive enzyme sensor based on phthalocyanine thin film. Analytica Chimica Acta, 1999. 391(3): p. 289-297.
    39. Razola, S.S., et al., Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosensors and Bioelectronics, 2002. 17(11): p. 921-928.
    40. Kumar, A., et al., Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol–gel film. Analytica Chimica Acta, 2000. 414(1): p. 43-50.
    41. Li, J. and S.N. Tan, Applications of amperometric silica sol-gel modified enzyme biosensors. Analytical letters, 2000. 33(8): p. 1467-1477.
    42. Narang, U., et al., Glucose biosensor based on a sol-gel-derived platform. Analytical Chemistry, 1994. 66(19): p. 3139-3144.
    43. Gorton, L., et al., Amperometric biosensors based on an apparent direct electron transfer between electrodes and immobilized peroxidases. Plenary lecture. Analyst, 1992. 117(8): p. 1235-1241.
    44. Jain, K., R. Pant, and S. Lakshmikumar, Effect of Ni doping on thick film SnO2 gas sensor. Sensors and Actuators B: Chemical, 2006. 113(2): p. 823-829.
    45. Guo, S., et al., Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. Acs Nano, 2010. 4(7): p. 3959-3968.
    46. Wu, H., et al., Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta, 2009. 80(1): p. 403-406.
    47. Yuan, J., K. Wang, and X. Xia, Highly Ordered Platinum‐Nanotubule Arrays for Amperometric Glucose Sensing. Advanced Functional Materials, 2005. 15(5): p. 803-809.
    48. Li, Y., et al., Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochemistry Communications, 2010. 12(6): p. 777-780.
    49. Yang, M., et al., Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosensors and Bioelectronics, 2006. 21(7): p. 1125-1131.
    50. Li, J., et al., Direct electrocatalytic reduction of hydrogen peroxide at a glassy carbon electrode modified with polypyrrole nanowires and platinum hollow nanospheres. Microchimica Acta, 2010. 171(1-2): p. 125-131.
    51. Bian, X., et al., Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide. Talanta, 2010. 81(3): p. 813-818.
    52. Karam, P. and L.I. Halaoui, Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. Analytical chemistry, 2008. 80(14): p. 5441-5448.
    53. Hrapovic, S., et al., Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Analytical chemistry, 2004. 76(4): p. 1083-1088.
    54. Crumbliss, A., et al., A carrageenan hydrogel stabilized colloidal gold multi-enzyme biosensor electrode utilizing immobilized horseradish peroxidase and cholesterol oxidase/cholesterol esterase to detect cholesterol in serum and whole blood. Biosensors and Bioelectronics, 1993. 8(6): p. 331-337.
    55. Xiao, Y., et al., " Plugging into enzymes": nanowiring of redox enzymes by a gold nanoparticle. Science, 2003. 299(5614): p. 1877-1881.
    56. Brown, K.R., A.P. Fox, and M.J. Natan, Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. Journal of the American Chemical Society, 1996. 118(5): p. 1154-1157.
    57. Patolsky, F., T. Gabriel, and I. Willner, Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. Journal of Electroanalytical Chemistry, 1999. 479(1): p. 69-73.
    58. Bharathi, S. and M. Nogami, A glucose biosensor based on electrodeposited biocomposites of gold nanoparticles and glucose oxidase enzyme. Analyst, 2001. 126(11): p. 1919-1922.
    59. Liu, S. and H. Ju, Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosensors and Bioelectronics, 2003. 19(3): p. 177-183.
    60. Yagati, A.K., et al., An enzymatic biosensor for hydrogen peroxide based on CeO2 nanostructure electrodeposited on ITO surface. Biosensors and Bioelectronics, 2013. 47: p. 385-390.
    61. Boyan, B.D., et al., Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996. 17(2): p. 137-146.
    62. Zheng, W., et al., Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films. Talanta, 2008. 74(5): p. 1414-1419.
    63. Yang, Y.J. and S. Hu, Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide. Electrochimica Acta, 2010. 55(10): p. 3471-3476.
    64. Yang, J., et al., A sensitive enzymeless hydrogen-peroxide sensor based on epitaxially-grown Fe3O4 thin film. Analytica chimica acta, 2011. 708(1): p. 44-51.
    65. Zhu, X., et al., Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosensors and Bioelectronics, 2007. 22(8): p. 1600-1604.
    66. Moradi Golsheikh, A., et al., One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon, 2013. 62: p. 405-412.
    67. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
    68. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 2008. 321(5887): p. 385-388.
    69. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
    70. Gilje, S., et al., A chemical route to graphene for device applications. Nano letters, 2007. 7(11): p. 3394-3398.
    71. Zhou, M., Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 2009. 81(14): p. 5603-5613.
    72. Liu, C., et al., Graphene-based supercapacitor with an ultrahigh energy density. Nano letters, 2010. 10(12): p. 4863-4868.
    73. Itaya, K., N. Shoji, and I. Uchida, Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes. Journal of the American Chemical Society, 1984. 106(12): p. 3423-3429.
    74. Pacholski, C., A. Kornowski, and H. Weller, Site‐Specific Photodeposition of Silver on ZnO Nanorods. Angewandte Chemie, 2004. 116(36): p. 4878-4881.
    75. Wood, A., M. Giersig, and P. Mulvaney, Fermi level equilibration in quantum dot-metal nanojunctions. The Journal of Physical Chemistry B, 2001. 105(37): p. 8810-8815.
    76. Shvalagin, V., A. Stroyuk, and S.Y. Kuchmii, Photochemical synthesis of ZnO/Ag nanocomposites. Journal of Nanoparticle Research, 2007. 9(3): p. 427-440.
    77. Stroyuk, A., V. Shvalagin, and S.Y. Kuchmii, Photochemical synthesis and optical properties of binary and ternary metal–semiconductor composites based on zinc oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2005. 173(2): p. 185-194.
    78. Rosi, N.L. and C.A. Mirkin, Nanostructures in biodiagnostics. Chemical reviews, 2005. 105(4): p. 1547-1562.
    79. Dai, Z., et al., Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chemistry-A European Journal, 2009. 15(17): p. 4321-4326.
    80. Mahadeva, S.K. and J. Kim, Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sensors and Actuators B: Chemical, 2011. 157(1): p. 177-182.
    81. Wang, S., et al., Preparation, characterization and catalytic behavior of SnO2 supported Au catalysts for low-temperature CO oxidation. Journal of Molecular Catalysis A: Chemical, 2006. 259(1): p. 245-252.
    82. Zhao, Q.-R., Controllable synthesis and catalytic activity of SnO2 nanostructures at room temperature. Transactions of Nonferrous Metals Society of China, 2009. 19(5): p. 1227-1231.
    83. Hamd, W., et al., Microstructural study of SnO2 thin layers deposited on sapphire by sol–gel dip-coating. Thin Solid Films, 2009. 518(1): p. 1-5.
    84. Kang, S.-Z., Y. Yang, and J. Mu, Solvothermal synthesis of SnO2 nanoparticles via oxidation of Sn2+ ions at the water–oil interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 298(3): p. 280-283.
    85. Lei, D., et al., Morphology effect on the performances of SnO2 nanorod arrays as anodes for Li-ion batteries. Materials Letters, 2011. 65(8): p. 1154-1156.
    86. Thong, L.V., L.T.N. Loan, and N. Van Hieu, Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sensors and Actuators B: Chemical, 2010. 150(1): p. 112-119.
    87. Wang, Y., et al., Facile synthesis of SnO2 nanograss array films by hydrothermal method. Thin Solid Films, 2010. 518(18): p. 5098-5103.
    88. Lee, Y., et al., SnO2 nanorods prepared by inductively coupled plasma-enhanced chemical vapor deposition. Nanotechnology, IEEE Transactions on, 2007. 6(4): p. 465-468.
    89. Lee, K.-T. and S.-Y. Lu, Porous FTO thin layers created with a facile one-step Sn4+-based anodic deposition process and their potential applications in ion sensing. Journal of Materials Chemistry, 2012. 22(32): p. 16259-16268.
    90. Liu, J., et al., Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. Journal of Materials Chemistry, 2010. 20(8): p. 1506-1510.
    91. Yu, Y., et al., Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries. Electrochimica Acta, 2009. 54(28): p. 7227-7230.
    92. Li, Y., B. Tan, and Y. Wu, Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays. Journal of the american chemical society, 2006. 128(44): p. 14258-14259.
    93. Vayssieres, L. and M. Graetzel, Highly ordered SnO2 nanorod arrays from controlled aqueous growth. Angewandte Chemie, 2004. 116(28): p. 3752-3756.
    94. Liu, F. and T. Li, Synthesis and magnetic properties of SnFe2O4 nanoparticles. Materials Letters, 2005. 59(2): p. 194-196.
    95. Lee, K.-T. and S.-Y. Lu, A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe2O4 nanocrystals from a carrier solvent assisted interfacial reaction process. Journal of Materials Chemistry A, 2015.
    96. 電化學原理與方法. 2002: 五南.
    97. Avci, E., An Electrochemical Study of the Deposition of Copper and Silver on Thymine Modified Au (111). 2007, Freie Universität Berlin, Germany.
    98. Ma, H., et al., Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde. Catalysis Communications, 2007. 8(3): p. 452-456.
    99. Lee, K.-T., C.-H. Lin, and S.-Y. Lu, SnO2 Quantum Dots Synthesized with a Carrier Solvent Assisted Interfacial Reaction for Band-Structure Engineering of TiO2 Photocatalysts. The Journal of Physical Chemistry C, 2014. 118(26): p. 14457-14463.
    100. Wu, S., et al., Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. J Colloid Interface Sci, 2010. 346(1): p. 12-6.
    101. Ameen, S., et al., Metal Oxide Nanomaterials, Conducting Polymers and Their Nanocomposites for Solar Energy. 2013: INTECH Open Access Publisher.
    102. Xia, B.Y., et al., Sandwich-structured TiO2–Pt–graphene ternary hybrid electrocatalysts with high efficiency and stability. Journal of Materials Chemistry, 2012. 22(32): p. 16499-16505.
    103. Singh, M., et al., Preparation and characterization of hydrophobic platinum-doped carbon aerogel catalyst for hydrogen isotope separation. Bulletin of Materials Science, 2014. 37(6): p. 1485-1488.
    104. Lin, C.Y., et al., Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta, 2010. 82(1): p. 340-7.
    105. Mohapatra, J., et al., Surface controlled synthesis of MFe2O4 (M= Mn, Fe, Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm, 2013. 15(3): p. 524-532.
    106. Sun, J., et al., Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of Biomedical Materials Research Part A, 2007. 80(2): p. 333-341.
    107. Scipioni, R., et al., Preparation and Characterization of Nanocomposite Polymer Membranes Containing Functionalized SnO2 Additives. Membranes, 2014. 4(1): p. 123-142.
    108. Li, Y., et al., Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. Sensors and Actuators B: Chemical, 2015. 206: p. 735-743.
    109. Ju, J. and W. Chen, In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Analytical chemistry, 2015. 87(3): p. 1903-1910.
    110. Ma, M., et al., Highly-ordered perpendicularly immobilized FWCNTs on the thionine monolayer-modified electrode for hydrogen peroxide and glucose sensors. Biosensors and Bioelectronics, 2015. 64: p. 477-484.
    111. Ding, L. and B. Su, A non-enzymatic hydrogen peroxide sensor based on platinum nanoparticle–polyaniline nanocomposites hosted in mesoporous silica film. Journal of Electroanalytical Chemistry, 2015. 736: p. 83-87.
    112. Kung, C.-C., et al., Preparation and characterization of three dimensional graphene foam supported platinum–ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors. Biosensors and Bioelectronics, 2014. 52: p. 1-7.
    113. Heli, H., et al., Enhanced electrocatalytic reduction and highly sensitive nonenzymatic detection of hydrogen peroxide using platinum hierarchical nanoflowers. Sensors and Actuators B: Chemical, 2014. 192: p. 310-316.
    114. Jiang, F., et al., A one-pot ‘green’synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing. Biosensors and Bioelectronics, 2013. 44: p. 127-131.
    115. You, J.-M., et al., Novel determination of hydrogen peroxide by electrochemically reduced graphene oxide grafted with aminothiophenol–Pd nanoparticles. Sensors and Actuators B: Chemical, 2013. 178: p. 450-457.
    116. Han, Y., J. Zheng, and S. Dong, A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites. Electrochimica Acta, 2013. 90: p. 35-43.
    117. Golsheikh, A.M., et al., One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection. Carbon, 2013. 62: p. 405-412.
    118. Chen, K.-J., et al., Bimetallic PtM (M= Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosensors and Bioelectronics, 2012. 33(1): p. 120-127.
    119. You, J.-M., D. Kim, and S. Jeon, Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures. Electrochimica Acta, 2012. 65: p. 288-293.
    120. Liang, F., M. Jia, and J. Hu, Pt-implanted indium tin oxide electrodes and their amperometric sensor applications for nitrite and hydrogen peroxide. Electrochimica Acta, 2012. 75: p. 414-419.
    121. Chang, L.-C., et al., One-pot synthesis of poly (3, 4-ethylenedioxythiophene)-Pt nanoparticle composite and its application to electrochemical H2O2 sensor. Nanoscale research letters, 2012. 7(1): p. 1-8.
    122. Han, K.N., et al., Development of Pt/TiO2 nanohybrids-modified SWCNT electrode for sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2012. 174: p. 406-413.
    123. Lee, Y.J., et al., Amperometric sensing of hydrogen peroxide via highly roughened macroporous Gold-/Platinum nanoparticles electrode. Current Applied Physics, 2011. 11(2): p. 211-216.
    124. Bo, X., et al., Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosensors and Bioelectronics, 2011. 28(1): p. 77-83.
    125. Huang, K.-J., et al., Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochimica Acta, 2011. 56(7): p. 2947-2953.
    126. Qin, X., et al., Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction. Electrochimica Acta, 2011. 56(9): p. 3170-3174.
    127. Liu, X., H. Zhu, and X. Yang, An amperometric hydrogen peroxide chemical sensor based on graphene-Fe3O4 multilayer films modified ITO electrode. Talanta, 2011. 87: p. 243-248.
    128. Song, X.C., et al., A hydrogen peroxide electrochemical sensor based on Ag nanoparticles grown on ITO substrate. Journal of Nanoparticle Research, 2011. 13(10): p. 5449-5455.
    129. Solanki, P.R., et al., Horse radish peroxidase immobilized polyaniline for hydrogen peroxide sensor. Polymers for Advanced Technologies, 2011. 22(6): p. 903-908.
    130. Kung, C.-W., et al., Synthesis of Co3O4 thin films by chemical bath deposition in the presence of different anions and application to H2O2 sensing. Procedia Engineering, 2011. 25: p. 847-850.
    131. Song, Y., et al., Electrochemical deposition of gold–platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications. Electrochimica Acta, 2010. 55(17): p. 4909-4914.
    132. Bo, X., et al., Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta, 2010. 82(1): p. 85-91.
    133. Li, L., et al., A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta, 2010. 82(5): p. 1637-1641.
    134. Dey, R.S. and C.R. Raj, Development of an amperometric cholesterol biosensor based on graphene− Pt nanoparticle hybrid material. The Journal of Physical Chemistry C, 2010. 114(49): p. 21427-21433.
    135. Ansari, A.A., P.R. Solanki, and B. Malhotra, Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. Journal of biotechnology, 2009. 142(2): p. 179-184.
    136. Wang, B., et al., A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica–hydroxyapatite hybrid film. Biosensors and Bioelectronics, 2009. 24(5): p. 1141-1145.
    137. Jiang, L.C. and W.D. Zhang, Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis, 2009. 21(8): p. 988-993.
    138. ElKaoutit, M., et al., A third-generation hydrogen peroxide biosensor based on Horseradish Peroxidase (HRP) enzyme immobilized in a Nafion–Sonogel–Carbon composite. Electrochimica Acta, 2008. 53(24): p. 7131-7137.
    139. Huang, J., et al., Electrospun Palladium Nanoparticle‐Loaded Carbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH. Advanced Functional Materials, 2008. 18(3): p. 441-448.
    140. Chen, X., et al., Electrocatalytic activity of horseradish peroxidase/chitosan/carbon microsphere microbiocomposites to hydrogen peroxide. Talanta, 2008. 77(1): p. 37-41.
    141. Zeng, X., et al., A sensitive nonenzymatic hydrogen peroxide sensor based on DNA–Cu2+ complex electrodeposition onto glassy carbon electrode. Sensors and Actuators B: Chemical, 2008. 133(2): p. 381-386.
    142. Liang, K.-Z. and W.-J. Mu, ZrO2/DNA-derivated polyion hybrid complex membrane for the determination of hydrogen peroxide in milk. Ionics, 2008. 14(6): p. 533-539.
    143. Qu, F., et al., Novel poly (neutral red) nanowires as a sensitive electrochemical biosensing platform for hydrogen peroxide determination. Electrochemistry Communications, 2007. 9(10): p. 2596-2600.
    144. Sun, Y.-X., et al., Hydrogen peroxide biosensor based on the bioelectrocatalysis of horseradish peroxidase incorporated in a new hydrogel film. Sensors and Actuators B: Chemical, 2007. 124(2): p. 494-500.
    145. Li, G., Y. Wang, and H. Xu, A hydrogen peroxide sensor prepared by electropolymerization of pyrrole based on screen-printed carbon paste electrodes. Sensors, 2007. 7(3): p. 239-250.
    146. Rawson, F., et al., Fabrication and characterisation of novel screen-printed tubular microband electrodes, and their application to the measurement of hydrogen peroxide. Electrochimica acta, 2007. 52(25): p. 7248-7253.
    147. Zhang, H., X. Zou, and D. Han, Hydrogen peroxide sensor based on hemoglobin immobilized on glassy carbon electrode with SiO2 nanoparticles/Chitosan film as immobilization matrix. Analytical letters, 2007. 40(4): p. 661-676.
    148. Zhang, J. and M. Oyama, Gold nanoparticle-attached ITO as a biocompatible matrix for myoglobin immobilization: direct electrochemistry and catalysis to hydrogen peroxide. Journal of Electroanalytical Chemistry, 2005. 577(2): p. 273-279.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE