研究生: |
莊捷旭 Chuang, Chieh-Hsu |
---|---|
論文名稱: |
低相位雜訊全差動式微機械振盪器設計 Design of a Low Phase Noise Reference Oscillator Based on Fully Differential Micromechanical Resonators |
指導教授: |
李昇憲
Li, Sheng-Shian |
口試委員: |
呂良鴻
盧向成 鄭裕庭 Lu, Michael S.-C. Lu, Liang-Hung |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 微機電系統 、相位雜訊 、微機械共振器 、微機械振盪器 、Lamè模態 |
外文關鍵詞: | Micro-Electro-Mechanical Systems (MEMS), Phase noise, Micromechanical Resonator, MEMS Oscillator, Lamè mode |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文實現具有自我偏壓機制的電容式微機械振盪器,其組成之共振器具備50奈米傳導間隙,且為一真空封裝之單晶矽Lamè-mode微機械振盪器。我們能有效利用設計電路的輸入與輸出端之直流偏壓電位,使共振器元件的致動與感測電極分別具有電性,這種方式足夠使Lamè-mode微機械振盪器產生自我振盪。
除此之外,為了探討降低微機械振盪器相位雜訊的方法,本論文利用商用IC與微機械共振器的整合,實現兩種不同的Lamè-mode微機械振盪器架構:分別為全差動式(Differential-In-Differential-Out, DIDO)與單端輸入雙端輸出(Single-In-Differential-Out, SIDO)。我們能透過全差動式的架構,有效減少第二諧波對於振盪器相位雜訊的影響,由本文實驗結果得知DIDO相較於SIDO架構,在close-to-carrier至少改善多達25dB的相位雜訊。因此全差動式的架構,能使電容式微機械振盪器具有良好的相位雜訊表現。
此微機械振盪器工作頻率為17.6MHz,於1KHz頻率偏移的相位雜訊表現為-127dBc/Hz,且於far-from-carrier的相位雜訊達到-132dBc/Hz。此振盪器的相位雜訊表現,在現今電容式微機械振盪器中極具競爭力,且與至今發表的MEMS振盪器比較,本研究具有最低之極化電壓。
In this work, we realize the low-polarization-voltage (Vp) capacitive MEMS oscillators implementing vacuum packaged 50nm-gap Lamè-mode silicon micromechanical resonators and investigate their phase noise performance. Single-crystal-silicon square-plate microresonators were fabricated by a foundry-oriented SOI-MEMS plus a poly-Si refill process. The devices were hermetically encapsulated at wafer-level using a eutectic bonding technique, which reduces air damping and enables high Q. The frequency of the resonators are around 17.6MHz and the extracted Q is about 20,000 while the motional impedance is around 6.7kΩ (Vp = 3V).
We also report the design and characterization of high gain-bandwidth TIA (transimpedance voltage amplifier) which is composed of two stages: the inverter-based I-to-V stage and voltage gain amplifier. The tunable-gain TIA circuit is fabricated using 2P4M 0.35µm CMOS technology and has been demonstrated with the maximum gain of 80dBΩ, 3-dB bandwidth of 134MHZ. The fully-differential oscillators based on 0.35µm TIA achieve a phase noise of –92dBc/Hz at 1kHz offset and -117dBc/Hz far-from-carrier phase noise performance.
In order to reduce the phase noise, we study the different oscillator configurations which are composed of commercial IC; these are here referred to as differential-in-differential-out (DIDO) and single-in-differential-out (SIDO). Clear disparities in their respective phase noise profiles could be observed. The DIDO outperforms the SIDO with an improved close-to-carrier phase noise by more than -127dBc/Hz at 1kHz offset and -132dBc/Hz far-from-carrier phase noise performance, which is competitive with state-of-the-art capacitive MEMS oscillators but with lowest Vp in this work.
[1] C. T.-C. Nguyen,"MEMS technology for timing and frequecny control,"IEEE Trans. Ultrason., Ferrolect., Freq. Contr.,vol. 54, no. 2, pp. 251-270, Feb. 2007.
[2] J. B. Muldavin and G. M. Rebeiz, "High-isolation CPW MEMS shunt switchesPart 2: Design," IEEE Trans. Microw., Tech., vol. 48, pp. 1053, 2000.
[3] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and T.-C. Nguyen," Microelectromechanical Hollow-Disk Ring Resonators,"Proceedings, 17th Int. IEEE Micro Electro Mechanical Systems Conf., Maastricht, The Netherlands, Jan. 25-29, 2004, pp.821-824
[4] G. Piazza, P.J. Stephanou, J.P. Black, R.M. White, A. P. Pisano, "Single-Chip Multiple-Frequency RF Microresonators based on Contour-Mode and FBAR Technologies," 2005 IEEE Ultrasonic Symposium, Rotterdam,pp. 1187-1190, 2005.
[5] R Abdolvand, H. Mirilavasani, G.K. Ho and F. Ayazi, "Thin-Film Piezoelectric-on-Silicon Resonators for High-Frequency Reference Oscillator Application,"IEEE Trans. Ultrason., Ferrolect., Freq. Contr.,vol. 55, Issue 12, pp. 2596-2606, Dec. 2008.
[6] A. Kaajakari, et al., "Square-extensional mode single-crystal silicon micromechanical resonator for low-phase-noise oscillator applications," IEEE Electron Devices Letters , vol. 25, no. 4, pp. 173-175, April 2004.
[7] Y. W. Lin, S. S. Li, Z. Ren, T.-C. Nguyen, "Low phase noise array-composite micromechanical wine-glass disk oscillators," in 2005 IEEE International Electron Devices Meeting (IEDM),Dec. 2005, pp. 287-290.
[8] T.-C. Nguyen and Howe R T,"An integrated CMOS micromechanical resonator high-Q oscillator,"IEEE J.Solid-State Circuit 34 440-55.
[9] H. M. Lavasani, A. K. Samarao, H. Casinovi, and F. Ayazi, "A 145MHz low phase-noise capacitive silicon micromechanical oscillator," IEDM2008, pp.675-678, Dec. 2008.
[10] Eric Colinet, Julien Arcamone, Antoine Niel, Emerick Lorent, Sèbastien Hentz, Eric Ollier, "100MHz oscillator based on a low polarization voltage capacitive Lamé-mode MEMS resonator,"FCS 2010 , pp. 174-178, June,2010.
[11] V. Kaajakari, Tomi Mattila, Aarne Oja, Jyrki Kiihamaki, Heikki Seppa, "Square-Extension mode single-Crystal silicon micromechanical resonator for low-phase-noise oscillator applications," IEEE Electron Device Letters, vol. 25, no. 4, pp. 173-175, April,2004.
[12] R. J. Matthys, Crystal Oscillator Circuits. New York: John Wiley & Sons, 1983.
[13] Discera, Inc., http://www.discera.com/
[14] SitTime, Inc., http://www.sitime.com/
[15] Y. W. Lin, S. Lee, Z. Ren, T.-C. Nguyen, "Series-resonant micromechanical resonator oscillator phase noise," Technical Digest, 2003 IEEE International Electron Devices Meeting, Washington, DC, Dec. 8-10,2003, pp. 341-349.
[16] S. Lee and T.-C. Nguyen, "Influence of automatic level control on micromechanical resonator oscillator phase noise,"Proceedings, 2003 IEEE Int. Frequency Control Symposium, Tampa Florida, May 5-8, 2003, pp. 341-349.
[17] S. Lee and T.-C. Nguyen, "Mechanically-coupled micromechanical arrays for improved phase noise,"Proceedings, IEEE Int. Ultrason., Ferrolect., Freq. Control 50th Anniv. Joint Conf., Montreal, Canada, Aug. 24-27, 2004, pp.280-286.
[18] W. A. Brantley, "Calculated elastic constants for stress problems associated with semiconductor devices, "Journal of Applied Physics, Vol. 44, no. 1, pp.534-535, Jan 1973.
[19] J. J. Wortman and R. A. Evans, "Youngs, modulus, shear modulus and poisson,s ratio in silicon and germanium, " Journal of Applied Physics, Vol. 36, no. 1, pp.153-156, Jan 1965.
[20] S. D. Senturia, Microsystem design, Kluwer Academic Publishers, 2001.
[21] W. W. Jr, S. P. Timpshenko, and D. H. Young, Vibration problems in engineering, 5th ed. John Wiley & Sons, 1990.
[22] C. T.-C. Nguyen and R. T. Howe, "An integrated CMOS micromechanical resonator high-Q oscillator," IEEE J. Solid-State Circuits, vol. 34,no.4,pp. 440-455, April 1999..
[23] H. M. Lavasani et al.,“A 76dBΩ 1.7GHz 0.18μm CMOS tunable TIA Using Broadband Pre-Amplifier for High Frequency Lateral MEMS oscillators,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 224-235, Jan. 2011.
[24] F. Nabki et al., “A highly integrated 1.8 GHz frequency synthesizer based on a MEMS resonator,” IEEE J. Solid-State Circuits, vol. 44, pp. 2154–2168, Mar. 2009.
[25] James Salvia et al.,“A 56MΩ CMOS TIA for MEMS Applications,” Tech. Dig., IEEE Custom Integrated Circuits Conference (CICC), 2009 pp. 198-202