研究生: |
郭俊毅 Kuo, Chun-Yi |
---|---|
論文名稱: |
基於離散哈特利轉換之濾波器組多載波系統的通道估測前置序列設計 A Preamble Design for Channel Estimation in a DHT-Based Filter Bank Multicarrier System |
指導教授: |
王晉良
Wang, Chin-Liang |
口試委員: |
歐陽源
李志鵬 吳東興 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 28 |
中文關鍵詞: | 通道估測 、離散哈特利轉換 、濾波器組多載波 、前置序列設計 |
外文關鍵詞: | channel estimation, discrete Hartley transform, filter bank multicarrier, preamble design |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用離散哈特利轉換(Discrete Hartley Transform ; 簡稱 DHT )之濾波器組多載波(Filter Bank Multicarrier ; 簡稱 FBMC)系統,可以用作離散傅里葉變換(Discrete Fourier Transform ; 簡稱 DFT)的替代方案,因為它有可能以更低的複雜度實現更好的性能。然而,可用於基於DFT的FBMC的常規通道估計方法不能直接應用於基於DHT的FBMC,其在任何兩個鏡像對稱子載波(具有位元反轉索引)之間具有一些不同的通道分集。在本論文中,我們提出了一種前置序列設計,用於同時估計基於DHT的FBMC系統中每對奇數(或偶數)鏡像對稱子載波的通道增益。前置序列結構是由四個頻域前置序列向量組成的特定時頻網格,其元素被排列為 1,使得每對鏡像對稱子載波的通道估計的均方誤差最小化。使用估計結果,可以簡單地通過線性內插獲得剩餘子載波的通道增益。仿真結果表明,所提出的前置序列設計為不同的ITU通道模型帶來了良好的通道估計的均方誤差,其中與完美通道信息下獲得的相比其錯誤率性能具有大約2dB的損失。
Filter bank multicarrier (FBMC) transmission using the discrete Hartley transform (DHT) can be used as an alternative to the discrete Fourier transform (DFT) because of its potential to achieve better performance with reduced complexity. However, conventional channel estimation methods available for DFT-based FBMC cannot be directly applied to DHT-based FBMC, which has some distinct channel diversity between any two mirror-symmetrical subcarriers (with bit reversal indexes). In this thesis, we propose a preamble design for simultaneously estimating the channel gains of each pair of odd-numbered (or even-numbered) mirror-symmetrical subcarriers in DHT-based FBMC systems. The preamble structure is a specific time-frequency lattice consisting of four frequency-domain pilot vectors whose elements are arranged to be 1, such that the mean-squared error (MSE) of channel estimation is minimized for each pair of mirror-symmetrical subcarriers. Using the estimated results, the remaining subcarrier’s channel gains can be obtained simply by linear interpolation. Simulation results show that the proposed preamble design leads to good MSE performance of channel estimation for different ITU channel models, where the bit error rate performance has about a 2 dB loss, in contrast to that obtained under perfect channel information.
[1] B. Le Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex [TV broadcasting],” Proc. IEEE, vol. 83, no. 6, pp. 982–996, Jun. 1995.
[2] S. Weinstein and P. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,” IEEE Trans. Commun., vol. 19, pp. 628–634, Oct. 1971.
[3] P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filterbank theory,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1170–1183, May 2002.
[4] A. Viholaninen, M. Bellanger, and M. Huchard, “PHYDYAS–Physical layer for dynamic access and cognitive radio,” Tech. Rep. D5.1, EU FP7-ICT Future Networks, Jan. 2009. Project website: http://www.ict-phydyas.org/.
[5] B. Farhang-Boroujeny, “OFDM versus filter bank multicarrier,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 92–112, May 2011.
[6] H. Nam, M. Choi, S. Han, C. Kim, S. Choi and D. Hong, “A New Filter-Bank Multicarrier System With Two Prototype Filters for QAM Symbols Transmission and Reception,” IEEE Trans. Wireless Commun, vol. 15, no. 9, pp. 5998–6009, Sept. 2016.
[7] R. N. Bracewell, “Discrete Hartley transform,” J. Opt. Soc. Amer., vol. 73, pp. 1832–1835, Dec. 1983.
[8] R. N. Bracewell, “The fast Hartley transform,” Proc. IEEE, vol. 72, pp. 1010–1018, Aug. 1984.
[9] K. Jones, The Regularized Fast Hartley Transform. Dordrecht: Springer, 2010.
[10] H. Nam, M. Choi, C. Kim, D. Hong and S. Choi, “A new filter-bank multicarrier system for QAM signal transmission and reception,” in Proc. IEEE International Conf. on Commun. (ICC’14), Sydney, NSW, Jun. 2014, pp. 5227–5232.
[11] C. Kim, Y. H. Yun, K. Kim, and J.-Y. Seol, “Introduction to QAM-FBMC: from wavefrom optimization to system design, ” IEEE Commun. Mag., vol.54, no. 11, pp. 66–73, Nov. 2016.
[12] H.-S. Pan, “A filter bank multicarrier system based on the discrete Hartley transform and two prototype filters,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Dec. 2017.
[13] C. Lélé, J.-P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan, “Channel estimation methods for preamble-based OFDM/OQAM modulations,” in Proc. EU. Wireless Conf. (EW’07), Paris, France, Apr. 2007, pp. 59–64.
[14] J. Du and S. Signell, “Time frequency localization of pulse shaping filter in OFDM/OQAM systems,” in Proc. Int. Conf. Inf., Commun. Signal Process. (ICICS’07), Singapore, Dec. 2007, pp. 1–5.
[15] E. Kofidis and D. Katselis, “Improved interference approximation method for preamble-based channel estimation in FBMC/OQAM,” in Proc. European Signal Process. Conf. (EUSIPCO’11), Barcelona, Spain, Aug. 2011, pp. 1603–1607.
[16] D. Kong, D. Qu and T. Jiang, “Time domain channel estimation for OQAM-OFDM systems: algorithms and performance bounds,” IEEE Trans. Signal Process., vol. 62, no. 2, pp. 322–330, Jan. 2014.
[17] S. C. Wang, “A New Preamble Design for Channel Estimation in Offset QAM Filter Bank Multicarrier Systems,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2016.
[18] J. P. Javaudin, D. Lacroix, and A. Rouxel, “Pilot-aided channel estimation for OFDM/OQAM,” in Proc. IEEE Veh. Technol. Conf. Spring (VTC-Spring), Apr. 2003, pp. 1581–1585.
[19] T. Yoon, S. Im, S. Hwang, and H. Choi, “Pilot structure for high data rate in OFDM/OQAM-IOTA system,” in Proc. IEEE Veh. Technol. Conf. Fall (VTC-Fall), Calgary, Alberta, Canada, Sep. 2008, pp.1–5.
[20] X. He, Z. Zhao, and H. Zhang, “A pilot-aided channel estimation method for FBMC/OQAM communications system,” in Proc. Int. Symp. Commun. Info. Technol. (ISCIT’12), Gold Coast, Queensland, Australia, 2012, pp. 175–180.
[21] W. Cui, D. Qu, T. Jiang, and B. Farhang-Boroujeny, “Coded auxiliary pilots for channel estimation in FBMC-OQAM systems,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 2936–2946, May 2016.
[22] B. Kwon, S. Kim and S. Lee, “Scattered Reference Symbol-Based Channel Estimation and Equalization for FBMC-QAM Systems,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3522–3537, Aug. 2017.
[23] K. -C. Yang, “Time and frequency synchronization for a DHT-based MIMO filter bank multicarrier system,” M.S. thesis, Inst. Commun. Eng., National Tsing Hua Univ., Hsinchu, Taiwan, Aug. 2018.