簡易檢索 / 詳目顯示

研究生: 黃筱雯
論文名稱: 蛋白-分子交互作用之研究 (1)蛋白與藥物之交互作用(2)蛋白與胜肽之交互作用
Studies on protein-molecule interactions I: protein-drug interactions II: protein-peptide interactions
指導教授: 余靖
口試委員: 莊偉哲
陳金榜
洪嘉呈
江昀緯
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 162
中文關鍵詞: 蛋白質結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在生物系統中的許多蛋白質有其獨特的作用區域,可與特定的分
    子結合,而且這些交互作用會決定蛋白質的活性與功能。研究蛋白質
    與分子的交互作用有助於了解蛋白質在生物系統中如何發揮其功
    能。這些作用的分子(統稱為ligands)包含蛋白、胜肽、核酸、金屬離
    子及藥物等等…。本篇論文進行兩個研究案例,分別是蛋白與藥物之
    交互作用以及蛋白與胜肽之交互作用。
    在研究案例一中,我們從結構上來討論hEGF 與suramin 之交互
    作用。人類表皮生長因子(hEGF)可促使多種生物細胞(包括腫瘤細胞)
    的增生分化,而此生物活性是透過hEGF與細胞膜表面上的特定受體
    (hEGFR)結合進而誘導產生一系列訊息傳導所致。Suramin
    (polysulfonated naphthylurea)作為生長因子阻斷劑,可以抑制非小細胞
    肺癌腫瘤細胞(NSCLC,其細胞表面大量表現hEGFR)之細胞增生能
    力。我們利用等溫滴定量熱法及核磁共振技術解析hEGF蛋白在生理
    條件水溶液中的結構並觀測hEGF 與suramin 的交互作用。本篇論文
    中提出的hEGF 水溶液結構與已發表之2:2 EGF–EGFR 複合物中的
    hEGF 結構在C 端有明顯不同,未和hEGFR 複合之hEGF 水溶液結
    構在C端形成一個疏水性基團。由這樣的構型差異推論:當hEGF與
    hEGFR結合,hEGF本身會產生構型變化,解開其C端的疏水性基團
    以利於受體之結合。有趣的是,根據我們解出的hEGF-suramin 複合
    體結構,suramin 正好也是結合在hEGF 的C 端(Arg45 周圍),可以
    保護C端的疏水性基團,因而阻斷了hEGF和hEGFR的結合。
    在研究案例二中,我們解出了HB-EGF-CT和mBAG-1-UBH的複
    合物結構並討論兩者間的結合區域。BCL2-associated athanogene 1
    (BAG-1)是一個重要的調節蛋白,可與多種抑制細胞凋亡相關之訊息
    分子結合。老鼠BAG-1 的ubiquitin 類似區域(簡稱mBAG-1-UBH)由
    97 個胺基酸所組成,已被證實可與proHB-EGF存在細胞質中的尾端
    (簡稱HB-EGF-CT)交互作用,且此作用具有重要的生物意義 (即為兩
    蛋白對細胞存活的協同作用)。本篇論文中,我們對mBAG-1-UBH和
    HB-EGF-CT 進行主鏈和支鏈上各原子的化學位移判定並且進行結構
    計算。我們利用等溫滴定量熱法及二維、三維核磁共振技術(1H-15N
    HSQC滴定和13C-filter NOESY)來決定此交互作用之結合強度以及結
    構上的結合區域。HB-EGF-CT在mBAG-1-UBH結構上的結合位置位
    於其C 端及12 之間的轉折區域。HB-EGF-CT 摺疊成環狀結構(不
    具任何二級結構),用兩端(N和C端)來和mBAG-1-UBH 作用。兩蛋
    白間的作用力包含疏水性、正負電荷及靜電作用力。


    Contents CHAPTER I: Introduction Part-I: Protein Structure 1.1. Prepare protein sample........................................................ 2 1.2. Sequence specific resonance assignments .......................... 4 1.3. Structure determination ..................................................... 13 Part-II: Protein-Ligand Interactions 1.4. Protein-Ligand interaction research .................................. 18 1.5. NMR spectroscopic analysis of protein-ligand binding ... 20 1.6. Isothermal titration calorimetric studies on protein-ligand association ........................................................................ 23 CHAPTER II: The NMR solution structure of human epidermal growth factor (hEGF) at physiological pH and its interactions with suramin 2.1. Introduction ..................................................................... 27 2.1.1. The function and structure of hEGF ....................... 27 2.1.2. EGF receptor-Ligand interaction ............................ 30 2.1.3. Cancer drugs that target EGFR .............................. 34 2.1.4. Anticancer activity of the growth factor blocker, suramin ................................................................... 37 IV 2.2. Materials and Methods ................................................... 40 2.2.1. Molecular cloning of hEGF .................................... 40 2.2.2. Expression, Purification and Characterization of hEGF ...................................................................... 43 2.2.3. Circular dichroism measurements of hEGF ........... 49 2.2.4. NMR experiments on hEGF ................................... 51 2.2.5. Structure calculation ............................................... 58 2.2.6. HADDOCK docking calculations .......................... 61 2.3. Results and Discussion ................................................... 63 2.3.1. Extent of the assignments of hEGF ........................ 63 2.3.2. Chemical shift index ............................................... 65 2.3.3. Solution structure of hEGF and Procheck analysis of the quality of calculated structures ......................... 67 2.3.4. Structure description of hEGF ................................ 71 2.3.5. HSQC titration of hEGF and suramin .................... 77 2.3.6. Isothermal Titration Calorimetric studies of hEGF and suramin ............................................................ 82 2.3.7. Secondary structure of hEGF & hEGF/suramin complex .................................................................. 84 2.3.8. Structure description of hEGF/suramin complex ……………………………………………………86 2.4. Conclusion and future perspectives .............................. 90 V CHAPTER III: The NMR solution structure of mouse BCL2-associated athanogene 1 (ubiquitin homology domain) and its interactions with the cytoplasmic tail domain of proHB-EGF 3.1. Introduction ..................................................................... 92 3.1.1. The function and structure of BCL2-associated athanogene 1 (BAG-1) .............. 92 3.1.2. The function of the membrane form of heparin -binding EGF-like growth factor (proHB-EGF) .... 97 3.1.3. Functional significance of the interaction between mouse BAG-1(ubiquitin homology domain) and the cytoplasmic tail domain of proHB-EGF .............. 100 3.2. Materials and Methods ................................................. 107 3.2.1. Molecular cloning of mBAG-1-UBH and HB-EGF-CT ......................................................... 107 3.2.2. Expression, Purification and Characterization of mBAG-1-UBH and HB-EGF-CT ........................ 111 3.2.3. NMR experiments on mBAG-1-UBH and HB-EGF-CT ......................................................... 122 3.2.4. Structure calculation of mBAG-1-UBH and HB-EGF-CT ......................................................... 127 VI 3.3. Results and Discussion ................................................. 130 3.3.1. Extent of the assignments of mBAG-1-UBH & HB-EGF-CT bound to mBAG-1-UBH ................ 130 3.3.2. Chemical shift index of mBAG-1-UBH ............... 132 3.3.3. Solution structure of mBAG-1-UBH and Procheck analysis of the quality of calculated structures .... 135 3.3.4. HSQC titration of mBAG-1-UBH and HB-EGF-CT… ..................................................... 141 3.3.5. Isothermal Titration Calorimetric studies of mBAG-1-UBH and HB-EGF-CT ........................ 146 3.3.6. Solution structure of mBAG-1-UBH/HB-EGF-CT complex…………………………………………148 3.4. Conclusion and future perspectives ............................ 154 References……………………………………………………156

    Bajaj M, Waterfield MD, Schlessinger J, Taylor WR, Blundell T
    (1987) On the tertiary structure of the extracellular
    domains of the epidermal growth factor and insulin
    receptors. Biochimica et Biophysica Acta (BBA) - Protein
    Structure and Molecular Enzymology 916 (2):220-226
    Batistatou A, Kyzas P, Goussia A, Arkoumani E, Voulgaris S,
    Polyzoidis K, Agnantis N, Stefanou D (2006) Estrogen
    receptor beta (ER) protein expression correlates with
    BAG-1 and prognosis in brain glial tumours. Journal of
    Neuro-Oncology 77 (1):17-23
    Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P,
    Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M,
    Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL
    (1998) Crystallography & NMR System: A New Software
    Suite for Macromolecular Structure Determination. Acta
    Crystallogr, Sect D: Biol Crystallogr 54 (5):905-921
    Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber
    M, Müller S, Klebl B, Cotten M, Kéri G, Wissing J, Daub
    H (2005) Cellular Targets of Gefitinib. Cancer Research
    65 (2):379-382
    Chang Y-G, Song A-X, Gao Y-G, Shi Y-H, Lin X-J, Cao X-T,
    Lin D-H, Hu H-Y (2006) Solution structure of the
    ubiquitin-associated domain of human BMSC-UbP and its
    complex with ubiquitin. Protein Science 15 (6):1248-1259
    Clemo NK, Collard TJ, Southern SL, Edwards KD, Moorghen M,
    Packham G, Hague A, Paraskeva C, Williams AC (2008)
    BAG-1 is up-regulated in colorectal tumour progression
    and promotes colorectal tumour cell survival through
    increased NF- B activity. Carcinogenesis 29 (4):849-857
    Coffey RJ, Leof EB, Shipley GD, Moses HL (1987) Suramin
    inhibition of growth factor receptor binding and
    mitogenicity in AKR-2B cells. J Cell Physiol 132
    (1):143-148
    Cohen S (1962) Isolation of a Mouse Submaxillary Gland Protein
    Accelerating Incisor Eruption and Eyelid Opening in the
    157
    New-born Animal. Journal of Biological Chemistry 237
    (5):1555-1562
    Cohen S, Carpenter G (1975) Human epidermal growth factor:
    isolation and chemical and biological properties.
    Proceedings of the National Academy of Sciences 72
    (4):1317-1321
    Cohen S, Elliott GA (1963) The Stimulation of Epidermal
    Keratinization by a Protein Isolated from the Submaxillary
    Gland of the Mouse1. The Journal of Investigative
    Dermatology 40 (1):1-5
    Darsaud A, Chevrier C, Bourdon L, Dumas M, Buguet A,
    Bouteille B (2004) Megazol combined with suramin
    improves a new diagnosis index of the early
    meningo-encephalitic phase of experimental African
    trypanosomiasis. Tropical Medicine & International Health
    9 (1):83-91
    de Vries SJ, van Dijk ADJ, Krzeminski M, van Dijk M, Thureau
    A, Hsu V, Wassenaar T, Bonvin AMJJ (2007) HADDOCK
    versus HADDOCK: New features and performance of
    HADDOCK2.0 on the CAPRI targets. Proteins: Struct,
    Funct, Bioinf 69 (4):726-733
    Dethlefsen SM, Raab G, Moses MA, Adam RM, Klagsbrun M,
    Freeman MR (1998) Extracellular calcium influx
    stimulates metalloproteinase cleavage and secretion of
    heparin-binding EGF-like growth factor independently of
    protein kinase C. Journal of Cellular Biochemistry 69
    (2):143-153
    Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK:
    A
    Protein−Protein Docking Approach Based on Biochemical
    or Biophysical Information. J Am Chem Soc 125
    (7):1731-1737
    Ferguson KM, Berger MB, Mendrola JM, Cho H-S, Leahy DJ,
    Lemmon MA (2003) EGF Activates Its Receptor by
    Removing Interactions that Autoinhibit Ectodomain
    Dimerization. Mol Cell 11 (2):507-517
    Fujiuchi S, Ohsaki Y, Kikuchi K (1997) Suramin Inhibits the
    Growth of Non-Small-Cell Lung Cancer Cells That
    158
    Express the Epidermal Growth Factor Receptor. Oncology
    54 (2):134-140
    Goddard TD, Kneller DG SPARKY 3, University of California,
    San Francisco
    Goishi K, Higashiyama S, Klagsbrun M, Nakano N, Umata T,
    Ishikawa M, Mekada E, Taniguchi N (1995) Phorbol ester
    induces the rapid processing of cell surface
    heparin-binding EGF-like growth factor: conversion from
    juxtacrine to paracrine growth factor activity. Molecular
    Biology of the Cell 6 (8):967-980
    Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S,
    Rinehart C, Seidel B, Yee D, Arteaga CL, Engelman JA
    (2008) Acquired resistance to EGFR tyrosine kinase
    inhibitors in cancer cells is mediated by loss of
    IGF-binding proteins. The Journal of Clinical Investigation
    118 (7):2609-2619
    Hieda M, Isokane M, Koizumi M, Higashi C, Tachibana T,
    Shudou M, Taguchi T, Hieda Y, Higashiyama S (2008)
    Membrane-anchored growth factor, HB-EGF, on the cell
    surface targeted to the inner nuclear membrane. The
    Journal of Cell Biology 180 (4):763-769
    Higashiyama S, Abraham J, Miller J, Fiddes J, Klagsbrun M
    (1991) A heparin-binding growth factor secreted by
    macrophage-like cells that is related to EGF. Science 251
    (4996):936-939
    Hommel U, Harvey TS, Driscoll PC, Campbell ID (1992)
    Human epidermal growth factor : High resolution solution
    structure and comparison with human transforming growth
    factor [alpha]. J Mol Biol 227 (1):271-282
    Hopper-Borge EA, Nasto RE, Ratushny V, Weiner LM, Golemis
    EA, Astsaturov I (2009) Mechanisms of tumor resistance
    to EGFR-targeted therapies. Expert Opinion on
    Therapeutic Targets 13 (3):339-362
    Hosang M (1985) Suramin binds to platelet-derived growth
    factor and inhibits its biological activity. Journal of
    Cellular Biochemistry 29 (3):265-273
    Hubbard SJ, Thornton JM (1993) 'NACCESS', Computer
    159
    Program, Department of Biochemistry and Molecular
    Biology, University College London.
    Iwamoto R, Mekada E (2000) Heparin-binding EGF-like growth
    factor: a juxtacrine growth factor. Cytokine & Growth
    Factor Reviews 11 (4):335-344
    Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized
    potentials for liquid simulations] potential functions for
    proteins, energy minimizations for crystals of cyclic
    peptides and crambin. Journal of the American Chemical
    Society 110 (6):1657-1666
    Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH,
    Wemmer DE, Zhang X, Kuriyan J (2009) Mechanism for
    Activation of the EGF Receptor Catalytic Domain by the
    Juxtamembrane Segment. Cell 137 (7):1293-1307
    Kakiuchi S, Daigo Y, Ishikawa N, Furukawa C, Tsunoda T,
    Yano S, Nakagawa K, Tsuruo T, Kohno N, Fukuoka M,
    Sone S, Nakamura Y (2004) Prediction of sensitivity of
    advanced non-small cell lung cancers to gefitinib (Iressa,
    ZD1839). Human Molecular Genetics 13 (24):3029-3043
    Kaur M, Reed E, Sartor O, Dahut W, Figg WD (2002) Suramin's
    Development: What Did we Learn? Invest New Drugs 20
    (2):209-219
    Kleywegt G (2007) Crystallographic refinement of ligand
    complexes. Acta Crystallographica Section D 63
    (1):94-100
    Koefoed K, Steinaa L, Søderberg JN, Kjær I, Jacobsen HJ,
    Meijer P-J, Haurum JS, Jensen A, Kragh M, Andersen PS,
    Pedersen MW (2011) Rational identification of an optimal
    antibody mixture for targeting the epidermal growth factor
    receptor. mAbs 3 (6):584-595
    Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: A program
    for display and analysis of macromolecular structures. J
    Mol Graph 14 (1):51-55
    Lemmon MA, Bu Z, Ladbury JE, Zhou M, Pinchasi D, Lax I,
    Engelman DM, Schlessinger J (1997) Two EGF molecules
    contribute additively to stabilization of the EGFR dimer.
    EMBO J 16 (2):281-294
    160
    Lin J, Hutchinson L, Gaston SM, Raab G, Freeman MR (2001)
    BAG-1 Is a Novel Cytoplasmic Binding Partner of the
    Membrane Form of Heparin-binding EGF-like Growth
    Factor. Journal of Biological Chemistry 276
    (32):30127-30132
    Lu H-S, Chai J-J, Li M, Huang B-R, He C-H, Bi R-C (2001)
    Crystal Structure of Human Epidermal Growth Factor and
    Its Dimerization. J Biol Chem 276 (37):34913-34917
    Massague J, Pandiella A (1993) Membrane-Anchored Growth
    Factors. Annual Review of Biochemistry 62 (1):515-541
    Middaugh CR, Mach H, Burke CJ, Volkin DB, Dabora JM, Tsai
    PK, Bruner MW, Ryan JA, Marfia KE (1992) Nature of
    the interaction of growth factors with suramin.
    Biochemistry 31 (37):9016-9024
    Montelione GT, Wuethrich K, Burgess AW, Nice EC, Wagner G,
    Gibson KD, Scheraga HA (1992) Solution structure of
    murine epidermal growth factor determined by NMR
    spectroscopy and refined by energy minimization with
    restraints. Biochemistry 31 (1):236-249
    Nanba D, Inoue H, Shigemi Y, Shirakata Y, Hashimoto K,
    Higashiyama S (2008) An intermediary role of
    proHB-EGF shedding in growth factor-induced c-Myc
    gene expression. Journal of Cellular Physiology 214
    (2):465-473
    Nanba D, Mammoto A, Hashimoto K, Higashiyama S (2003)
    Proteolytic release of the carboxy-terminal fragment of
    proHB-EGF causes nuclear export of PLZF. The Journal
    of Cell Biology 163 (3):489-502
    Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH,
    Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S
    (2002) Crystal structure of the complex of human
    epidermal growth factor and receptor extracellular
    domains. Cell 110 (6):775-787
    Pierce MM, Raman CS, Nall BT (1999) Isothermal Titration
    Calorimetry of Proteserer M, Abraham R, Wallasch C,
    Ullrich A (1999) EGF receptor transactivation by
    G-protein-coupled receptors requires metalloproteinase
    161
    cleavage of proHB-EGF. Nature 402 (6764):884-888
    Prenzel N, Zwick E, Daub H, LAnderson J FH (1978) Further
    studies on the treatment of ocular onchocerciasis with
    diethylcarbamazine and suramin. British Journal of
    Ophthalmology 62:450-457
    The PyMOL Molecular Graphics System. Version 1.2.8,
    Schrödinger, LLC.
    Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963)
    Stereochemistry of polypeptide chain configurations.
    Journal of Molecular Biology 7 (1):95-99
    Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE,
    Nilges M (2007) ARIA2: Automated NOE assignment and
    data integration in NMR structure calculation.
    Bioinformatics 23 (3):381-382
    Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a
    hybrid method for predicting protein backbone torsion
    angles from NMR chemical shifts. Journal of
    Biomolecular NMR 44 (4):213-223
    Takayama S, Xie Z, Reed JC (1999) An Evolutionarily
    Conserved Family of Hsp70/Hsc70 Molecular Chaperone
    Regulators. Journal of Biological Chemistry 274
    (2):781-786
    Takemura T, Kondo S, Homma T, Sakai M, Harris RC (1997)
    The Membrane-bound Form of Heparin-binding Epidermal
    Growth Factor-like Growth Factor Promotes Survival of
    Cultured Renal Epithelial Cells. Journal of Biological
    Chemistry 272 (49):31036-31042
    Taylor JM, Mitchell WM, Cohen S (1972) Epidermal Growth
    Factor. Journal of Biological Chemistry 247
    (18):5928-5934
    Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G
    (2003) BAG-1: a multifunctional regulator of cell growth
    and survival. Biochimica et Biophysica Acta (BBA) -
    Reviews on Cancer 1603 (2):83-98
    Tsukahara F, Maru Y (2010) Bag1 directly routes immature
    BCR-ABL for proteasomal degradation. Blood 116
    (18):3582-3592
    162
    Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW,
    Lee J, Yarden Y, Libermann TA, Schlessinger J,
    Downward J, Mayes ELV, Whittle N, Waterfield MD,
    Seeburg PH (1984) Human epidermal growth factor
    receptor cDNA sequence and aberrant expression of the
    amplified gene in A431 epidermoid carcinoma cells.
    Nature 309 (5967):418-425
    Venturi S, Venturi M (2009) Iodine in Evolution of Salivary
    Glands and in Oral Health. Nutrition and Health 20
    (2):119-134
    Wang X, Mizushima H, Adachi S, Ohishi M, Iwamoto R,
    Mekada E (2006) Cytoplasmic Domain Phosphorylation of
    Heparin-Binding EGF-like Growth Factor. Cell Structure
    and Function 31 (1):13
    Ward CW, Hoyne PA, Flegg RH (1995) Insulin and epidermal
    growth factor receptors contain the cysteine repeat motif
    found in the tumor necrosis factor receptor. Proteins:
    Structure, Function, and Bioinformatics 22 (2):141-153
    Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a
    simple method for the identification of protein secondary
    structure using 13C chemical-shift data. J Biomol NMR 4
    (2):171-180
    Zhou B-BS, Peyton M, He B, Liu C, Girard L, Caudler E, Lo Y,
    Baribaud F, Mikami I, Reguart N, Yang G, Li Y, Yao W,
    Vaddi K, Gazdar AF, Friedman SM, Jablons DM, Newton
    RC, Fridman JS, Minna JD, Scherle PA (2006) Targeting
    ADAM-mediated ligand cleavage to inhibit HER3 and
    EGFR pathways in non-small cell lung cancer. Cancer Cell
    10 (1):39-50
    Zuiderweg ERP (2001) Mapping Protein−Protein Interactions in
    Solution by NMR Spectroscopy. Biochemistry 41 (1):1-7

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE