簡易檢索 / 詳目顯示

研究生: 宋棋舜
Song, Chi-Shun
論文名稱: 含奈米碳管之奈米複合材料應變感測器的製備與應用
Fabrication and Application of Strain Sensor Made of Nanocomposites with Carbon Nanotubes
指導教授: 葉孟考
Yeh, Meng-Kao
戴念華
Tai, Nyan-Hwa
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 奈米碳管應變感測器環氧樹脂導電性
外文關鍵詞: Carbon nanotube, Strain sensor, epoxy, conductivity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應變規為工業界重要的量測工具,對於機械、土木、航太、或是醫學的領域提供便利的應變量測。本文中將奈米碳管添加入環氧樹脂或紙漿中以提升基材之導電性質,製成之複合材料可做為應變量測之工具以取代傳統之應變規。奈米碳管具有質輕、高剛性、高強度及優越的電學性質,將其添加入高分子聚合物作為補強材為常見的應用方式。本文中採用的基材為工業界常用的環氧樹脂,及日常生活中常見的紙張。
    奈米碳管添加入絕緣性材料時,電流可藉由碳管與碳管的連接而導通,使複合材料的電阻值下降。由碳管連接產生的導電能力隨著碳管間連結的改變而變化,當複合材料的結構變形時,碳管間的間隙增加,試片的體積電阻值隨之提升。本研究藉由偵測材料電阻值的變化,建立應變感測器以取代傳統之應變規。本文中除了量測不同碳管含量之複合材料的機電性質,並量測拉伸應變與複材體積電阻的關係,實驗結果發現在一定應變範圍內拉伸應變與體積電阻值變化呈線性相關。本研究同時探討不同尺寸、溫度、濕度時感測器的變化並以場發射掃描式電子顯微鏡觀察奈米碳管與基材間接合的情形以及碳管在基材中的分散性。最後使用有限單元軟體ANSYS探討感測器的尺寸對量測時產生的影響。


    Strain gauge is an important measurement tool for the industrial sector, especially for mechanical, civil, aerospace, or medical field to facilitate strain measurement. In this paper, the carbon nanotubes added to the epoxy resin or pulp to improve the conducting properties of the substrate. The composite materials can be used as strain measurement instrument to replace the traditional strain gauge. Carbon nanotubes have light weight, high rigidity, high strength and excellent electrical properties, added to polymers as a reinforcing material for the common application form. In this paper, the substrate is the epoxy resin which is commonly used in industry, and paper used in the daily life.
    Resistance of the composites decreased and current can be conducted by the connection of carbon nanotubes, when carbon nanotubes added to the insulation material. The conductivity changed by connection of Carbon nanotubes. When the structure deform, the gap between carbon nanotubes increase, then the resistance of the of composite materials increase. In this study, deformation was detected by measure resistance to replace the traditional strain gauge.
    In this paper, the conductivity, mechanical properties of composites, and the relationship of resistance and strain was measured. This study also explores the effect of various dimensions, temperature and humidity to the sensor. Observe the matrix and connection of CNT and matrix by field emission scanning electron microscopy to compare with the experimental results. Finally, use the ANSYS to discuss the size effect of the sensor when measuring.

    內文目錄 摘要 i 內文目錄 ii 圖表目錄 v 第一章 緒論 1 1.1.研究動機 1 1.2.文獻回顧 2 1.2.1.奈米碳管簡介與應用 2 1.2.2.奈米碳管與複合材料之機械性質 4 1.2.3.導電高分子 4 1.2.4.分散劑與官能基化 5 1.2.5.奈米碳管複合材料感測器之應用 6 1.3.研究主題 8 第二章 實驗方法與步驟 10 2.1.實驗儀器 10 2.1.1.攪拌機 10 2.1.2.超音波震動器 10 2.1.3.濾網 10 2.1.4.真空烘箱與真空幫浦 11 2.1.5.熱壓機 11 2.1.6.熱風循環烤箱 11 2.1.7.三用電表 12 2.1.8.電阻量測儀 13 2.1.9.超高電阻量測儀 13 2.1.10.拉伸試驗機 13 2.1.11.場發射掃描式電子顯微鏡 13 2.1.12.CVD系統 13 2.1.13.恆溫恆濕機 13 2.2組成材 14 2.2.1.奈米碳管 14 2.2.2.環氧樹脂 15 2.2.3 N-Methyl-2-pyrrolidone 15 2.2.4.乾紙漿 15 2.3.試片製作 16 2.3.1.奈米碳管/環氧樹脂複合材料 16 2.3.2.奈米碳管/紙漿複合材料 .17 2.4.表面電阻值量測 18 2.5.機械性質量測 18 2.6 應變與體積電阻關係量測 19 2.7.尺寸對應變與體積電阻之影響 19 2.8.溫度對體積電阻之影響 19 2.9.濕度對體積電阻之影響 20 2.10.場發射掃描式電子顯微鏡 20 第三章 有限單元法與數據分析 21 3.1.有限單元分析 21 3.2.數據分析 23 第四章 結果與討論 26 4.1.表面電阻的量測 26 4.2.機械性質的量測 28 4.3.應變對無因次化體積電阻之關係 29 4.4.尺寸對應變與無因次化體積電阻之關係 31 4.5溫度與無因次化體積電阻之關係 31 4.6濕度與無因次化體積電阻之關係 32 4.7.有限單元法分析 33 4.8.場發射掃描式電子顯微鏡 34 第五章 結論 36 參考文獻 38 圖表 43

    [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991.
    [2] 成會明,奈米碳管,五南圖書股份有限公司,台灣台北,2004。
    [3] 徐國財、張立德,奈米複合材料,五南圖書股份有限公司,台灣台北,2004。
    [4] E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and their Composites: A Review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
    [5] M. M. J. Treacy, T. W. Ebbesen and T. M. Gibson, “Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes,” Nature, Vol. 381, pp. 678-680, 1996.
    [6] 馬振基,奈米材料科技原理與運用,全華科技圖書股份有限公司,台灣台北,2003。
    [7] 麥富德、黃楓台、簡國明、王永銘、陳秋燕,奈米碳管專利地圖及分析,行政院國家科學委員會科學技術資料中心,台灣台北,2002。
    [8] D. S. Y. Hsu, J. L. Shaw, “1 A/cm2 Current Density from Microgated Carbon Nanotube Field-Emitter Arrays Grown by dc Plasma Chemical-Vapor Deposition,” Journal of Vacuum Science & Technology B, Vol. 24, pp. 988-992, 2006.
    [9] 凌國銓,奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究,碩士論文,國立清華大學動力機械學系,新竹,2006。

    [10] L. Xiao, Z. Chen, C. Feng, L. Liu, Z. Bai, Y. Wang, “Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers,” Nano Letters, Vol. 8, pp. 4539-4545, 2008.
    [11] M. Zhang, S. Fang, A. A. Zakhidov, “Strong, Transparent, Multifunctional, Carbon Nanotube Sheets,” Science, Vol. 309, pp. 1215-1219, 2005.
    [12] T. Sekitani, Y. Noguchi, “A Rubberlike Stretchable Active Matrix Using Elastic Conductors,” Science, Vol. 321, pp. 1468-1472, 2008.
    [13] P. Torma, G.S. Paraoanu, “High-Speed Memory from Carbon Nanotube Field-Effect Transistors with High-kappa Gate Dielectric,” Nano Letters, Vol. 9, pp. 643-647, 2009.
    [14] 陳伯毅,原子力顯微鏡探針懸臂樑彈簧常數及奈米碳管機械性質量測,博士論文,國立清華大學動力機械學系,新竹,2008。
    [15] 顧宜,複合材料,新文京圖書股份有限公司,台灣台北,2002。
    [16] R. F. Gibson, Principles of Composite Material Mechanics, Mcgraw-Hill, New York, 1994.
    [17] N. H. Tai, M. K. Yeh and J. H. Liu, “Enhancement of the Mechanical Properties of Carbon Nanotube/Phenolic Composites Using a Carbon Nanotube Network as the Reinforcement,” Carbon, Vol. 42, pp. 2735–2777, 2004.
    [18] M. K. Yeh, N. H. Tai and J. H. Liu, “Mechanical Behavior of Phenolic-Based Composites Reinforced with Multi-Walled Carbon Nanotubes,” Carbon, Vol. 44, pp. 1-9, 2006.
    [19] K. P. Ryan, M. Cadek, V. Nicolosi, D. Blond, and M. Ruether, “Carbon Nanotubes for Reinforcement of Plastics? A Case Study with Poly(vinyl alcohol),” Composites Science and Technology, Vol. 67, pp. 1640-1649, 2007.
    [20] W. Chen, X. Tao, and Y. Liu, “Carbon Nanotube-Reinforced Polyurethane Composite Fibers,” Composites Science and Technology, Vol. 66, pp. 3029-3034, 2006.
    [21] J. Ning, J. Zhang, Y. Pan, and J. Gu, “Fabrication and Mechanical Properties of SiO2 Matrix Composites Reinforced by Carbon Nanotube,” Materials Science and Engineering, Vol. 357, pp. 392-396, 2003.
    [22] Y. Breton, G. Desarmot, J. P. Salvetat, S. Delpeux, C. Sinturel and F. Beguin, “Mechanical Properties of Multiwall Carbon Nanotubes/Epoxy Composite: Influence of Network Morphology,” Carbon, Vol. 42, pp. 1027-1030, 2004.
    [23] K. T. Lau, S. Q. Shi and H. M. Cheng, “Micro-Mechanical Properties and Morphological Observation on Fracture Surfaces of Carbon Nanotube Composites Pretreated at Different Temperatures,” Composites Science and Technology, Vol. 63, pp. 1161-1164, 2003.
    [24] A. J. Heeger, “Semiconducting and Metallic Polymers: the Fourth Generation of Polymeric Materials”, Synthetic Metals, Vol. 19, pp.125-129, 2001.
    [25] 張佐光,功能複合材料,新材料與應用技術叢書,台灣台北,2006。
    [26] 徐武軍,高分子材料導論,全華科技圖書股份有限公司,台灣台北,2008。
    [27] 林世仁、何國賢,導電性聚摻合物的研究,碩士論文,國立高雄應用科技大學化學工程研究所,高雄,2004。
    [28] M. H. G. Wichmann1, S. T. Buschhorn, L. Boger, R. Adelung and K. Schulte1, “Direction Sensitive Bending Sensors Based on Multi-Wall Carbon Nanotube/Epoxy Nanocomposites,” Nanotechnology, Vol. 19, Number475503, 2008.
    [29] 馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台灣台北,2003。
    [30] M. Knite, V. Tupureina, A. Fuith, J. Zavickis and V. Teteris, “Polyisoprene-Multiwall Carbon Nanotube Composites for Sensing Strain,” Materials Science and Engineering, Vol. 27, pp. 1125–1128, 2007.
    [31] Y. Bin, M. Mine, A. Koganemaru, X. Jiang and M. Mastuo, “Morphology and Mechanical and Electrical Properties of Oriented PVA-VGCF and PVA-MWNT Composites,” Polymer, Vol. 47, pp. 1308-1317, 2006.
    [32] J. Wang, Z. Fang, A. Gu, L. Xu and F. Liu, “Effect of Amino-Functionalization of Multi-Walled Carbon Nanotubes on the Dispersion with Epoxy Resin Matrix,” Applied Polymer Science, Vol. 100, pp. 97-104, 2006.
    [33] C. Park, Z. Ounaies, K. A. Watson, R. E. Crooks, J. Smith, S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison and T .L. S. Clair, “Dispersion of Single Wall Carbon Nanotubes by in Situ Polymerization under Sonication,” Chemical Physic Letters, Vol. 364, pp. 303-308, 2002.
    [34] Y. Breton, G. Desarmot, J. P. Salvetat, S. Delpeux, C. Sinturel and F. Beguin, “Mechanical Properties of Multiwall Carbon Nanotubes/Epoxy Composite: Influence of Network Morphology,” Carbon, Vol. 42, pp. 1027-1030, 2004.
    [35] S. Namilae, N. Chandra and C. Shet, “Mechanical Behavior of Functionalized Nanotubes,” Chemical Physics Letters, Vol. 387, pp. 247-252, 2004.
    [36] K. T. Lau, M. Lu, C. K. Lam, H. Y. Cheung, F. L. Sheng and H. L. Li, “Thermal and Mechanical Properties of Single-walled Carbon Nanotube Bundle-Reinforced Epoxy Nanocomposites: The Role of Solvent for Nanotube Dispersion,” Composites Science and Technology, Vol. 65, pp. 719-725, 2005.
    [37] Y. Zhang, Z. Shi, Z. Gu and S. Iijima, “Structure Modification of Single-Wall Carbon Nanotubes,” Carbon, Vol. 38, pp. 2055-2059, 2000.
    [38] M. Park, H. Kim, and J. P. Youngblood, “Strain-Dependent Electrical Resistance of Multi-Walled Carbon Nanotube/Polymer Composite Films,” Nanotechnology, Vol. 19, Number055705, 2008.
    [39] M. Fu, Y. Yu, J. J. Xie, L. P. Wang, M. Y. Fan, S. L. Jiang, and Y. K. Zeng, “Significant Influence of Film Thickness on the Percolation Threshold of Multiwall Carbon Nanotube/Low Density Polyethylene Composite Films, ” Applied Physics Letters, Number012904, 2009.
    [40] H. Yoon, J. Xie, J. K. Abraham, V. K. Varadan, and P. B. Ruffin, “Passive Wireless Sensors Using Electrical Transition of Carbon Nanotube Junctions in Polymer Matrix,” Smart Materials and Structures, Vol. 15, pp. S14-S20, 2006.
    [41] I. Kang, M. J. Schulz1, J. H. Kim, V. Shanov, and D. Shi, “A Carbon Nanotube Strain Sensor for Structural Health Monitoring,” Smart Materials and Structures, Vol. 15, pp. 737-748, 2006.
    [42] K. J. Loh, J. Kim, J. P. Lynch, N. W. S. Kam, and N. A. Kotov, “Multifunctional Layer-by-Layer carbon Nanotube–Polyelectrolyte Thin Films for Strain and Corrosion Sensing,” Smart Materials and Structures, Vol. 16, pp. 429-438, 2007.
    [43] C. Li, E. T. Thostenson, and T. W. Chou, “Sensors and Actuators Based on Carbon Nanotubes and their Composites,” Composites Science and Technology, Vol. 68, pp. 1227-1249, 2008.
    [44] S. B. Kharchenko, J. F. Douglas, J. Obrzut, E. A. Grulke, and K. B. Migler, “Flow-Induced Properties of Nanotube-Filled Polymer Materials,” Nature Materials, Vol. 3, pp. 564-568, 2004.
    [45] E. T. Thostenson and T. W. Chou, “Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing” Advanced Materials, Vol. 18, pp. 2837-2841, 2006.
    [46] E. T. Thostenson and T. W. Chou, “Real-time in Situ Sensing of Damage Evolution in Advanced Fiber Composites Using Carbon Nanotube Networks,” Nanotechnology, Vol. 19, Number215713, 2008.
    [47] N. A. Koratkar, “ Nanotubes Help Detect and Repair Cracks in Polymer Composite Structures,” Materials Performance, Vol. 46, pp. 19-21, 2007.
    [48] http://nanotechweb.org/cws/article/tech/17172
    [49] L. Hu, J. W. Choi, Y. Yang, S. Jeong, F. L. Mantia, L. F. Cui, and Y. Cui, “Highly conductive paper for energy-storage devices,” PNAS, Vol. 106, pp. 21490–21494, 2009.
    [50] http://www.tecpel.com.tw/
    [51] ASTM D638-82a, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
    [52] R. D. Cook, D. S. Marlkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, Fourth edition Wiley, U.S.A, 2001.
    [53] 陳精一,ANSYS7.0電腦輔助工程實務分析,全華科技圖書股份有限公司,台灣台北,2005。
    [54] ANSYS Release 11.0, ANSYS, Inc., PA, 2006.
    [55] http://www.doublea.com.tw/index.htm
    [56] 劉亦強,印表機進紙機構之分析,碩士論文,國立台灣科技大學機械系,台北,2007。
    [57] R. E. Benson, “Effects of Relative Humidity and Temperature on Tensile Stress-Strain Properties of Kraft Linerboard,” Tappi, Vol. 54, pp. 699-703, 1971.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE