研究生: |
魏嘉緯 Wei, Chia-Wei |
---|---|
論文名稱: |
具有宇稱及時間反演對稱下一維非厄米柘樸系統中的孤立子 The soliton state in the 1-D non-Hermitian topological system with PT-symmetry |
指導教授: |
黃一平
Huang, Yi-Ping |
口試委員: |
張博堯
Chang, Po-Yao 謝長澤 Hsieh, Chang-Tse |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 非厄米 、柘樸系統 、孤立子 、宇稱及時間反演對稱 |
外文關鍵詞: | non-Hermitian, Topological system, Soliton, PT-symmetry |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探究的是對於非厄米哈密頓量滿足宇稱與時間反演對稱下,一維柘樸系統中的孤立子解對於環境造成的能量增益及耗損其本身的穩定性。首先我會簡易介紹宇稱與時間反演對稱性在非厄米性統中的性質,我們注意到獨特點是在非厄米系統中獨有的性質,我們可以發現此點可以用來刻畫全實本徵值到本徵值具有複數值中過渡出現的轉變點。在二章中,我則會介紹如何從開放系統及量子資訊理論中密度矩陣演化兩種不同的的觀點去推導出非厄米哈密頓量。接下來,我們將介紹一維SSH 模型中的孤立子並考慮孤立子處在具有能量增益及耗散的系統中,當系統具備宇稱及時間返演對稱時,隨著增加系統中非厄米強度,我們發現到孤立子不受其影響並保持本身具有的穩定性。最後,我們簡單探討如何利用柘樸不變量保真度去描述拓樸系統中的平庸相及拓樸相並拓廣至非厄米系統情況。
For the non-Hermitian system to satisfy the parity and time reversal symmetry, this thesis aims to study the stability of the soliton state in the one-dimensional topological system with gain and loss caused by the environment. First, I will briefly introduce the properties of parity and time reversal symmetry in the non-Hermitian system. We notice that the exceptional point has a special property that can characterize the transition point for the eigenvalues with all real to the eigenvalues with complex values. In the second chapter, I will introduce how to derive the non-Hermitian Hamiltonian from two different perspectives, one is an open quantum system and another is the evolution of the density matrix in the quantum information theory. Then, I will introduce the soliton state in the one-dimensional SSH model and consider the soliton state in the system with energy gain and loss. When the system has the PT -symmetry, as increasing strength of non-Hermitian, we found that the soliton state would not be affected and still keeps the stability itself. Finally, we briefly discuss how to describe the trivial phase and topological phase using the topological invariant and fidelity and extend it into the non-Hermitian case.
[1] C. M. Bender and S. Boettcher, “Real spectra in non-hermitian hamiltonians having PT symmetry,” Phys. Rev. Lett., vol. 80, pp. 5243–5246, Jun 1998.
[2] C. M. Bender, “Making sense of non-hermitian hamiltonians,” Reports on Progress in Physics, vol. 70, pp. 947–1018, may 2007.
[3] G. Gamow, “Zur quantentheorie des atomkernes,” Zeitschrift für Physik, vol. 51, pp. 204–212, Mar 1928.
[4] H. Feshbach, C. E. Porter, and V. F. Weisskopf, “Model for nuclear reactions with neutrons,” Phys. Rev., vol. 96, pp. 448–464, Oct 1954.
[5] W. D. Heiss, “The physics of exceptional points,” Journal of Physics A: Mathematical and Theoretical, vol. 45, p. 444016, oct 2012.
[6] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, “Exceptional topology of non-hermitian systems,” Rev. Mod. Phys., vol. 93, p. 015005, Feb 2021.
[7] M.-A. Miri and A. Alù, “Exceptional points in optics and photonics,” Science, vol. 363, no. 6422, p. eaar7709, 2019.
[8] D. C. Brody, “Biorthogonal quantum mechanics,” Journal of Physics A: Mathematical and Theoretical, vol. 47, p. 035305, dec 2013.
[9] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford University Press, 01 2007.
[10] G. Lindblad, “On the generators of quantum dynamical semigroups,” Communications in Mathematical Physics, vol. 48, no. 2, pp. 119 – 130, 1976.
[11] J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems,” Journal of Physics C: Solid State Physics, vol. 6, p. 1181, apr 1973.
[12] N. Nagaosa and Y. Tokura, “Topological properties and dynamics of magnetic skyrmions,” Nature Nanotechnology, vol. 8, pp. 899–911, Dec 2013.
[13] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics. Cambridge: Cambridge University Press, 1995.
[14] W. P. Su, J. R. Schrieffer, and A. J. Heeger, “Solitons in Polyacetylene,” Physical Review Letters, vol. 42, pp. 1698–1701, June 1979. Publisher: American Physical Society.
[15] E. J. Meier, F. A. An, and B. Gadway, “Observation of the topological soliton state in the su–schrieffer–heeger model,” Nature Communications, vol. 7, p. 13986, Dec 2016.
[16] S. Shen, Topological Insulators: Dirac Equation in Condensed Matter. Springer Series in Solid-State Sciences, Springer Singapore, 2017.
[17] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators. Springer International Publishing, 2016.
[18] M. Ezawa, N. Ishida, Y. Ota, and S. Iwamoto, “Supersymmetric non-hermitian topological interface laser,” Phys. Rev. B, vol. 107, p. 085302, Feb 2023.
[19] S. Lieu, “Topological phases in the non-hermitian su-schrieffer-heeger model,” Phys. Rev. B, vol. 97, p. 045106, Jan 2018.
[20] M. Born and V. Fock, “Beweis des adiabatensatzes,” Zeitschrift für Physik, vol. 51, no. 3, pp. 165–180, 1928.
[21] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 392, no. 1802,
pp. 45–57, 1984.
[22] D. Vanderbilt, Berry phases in electronic structure theory: electric polarization, orbital magnetization and topological insulators. Cambridge University Press, 2018.
[23] L. D. Landau, “On the theory of phase transitions,” Zh. Eksp. Teor. Fiz., vol. 7, pp. 19–32, 1937.
[24] S. Sachdev, Quantum phase transitions. Cambridge university press, 2011.
[25] S.-J. GU, “Fidelity approach to quantum phase transitions,” International Journal of Modern Physics B, vol. 24, no. 23, pp. 4371–4458, 2010.
[26] S.-J. Gu, H.-M. Kwok, W.-Q. Ning, and H.-Q. Lin, “Fidelity susceptibility, scaling, and universality in quantum critical phenomena,” Phys. Rev. B, vol. 77, p. 245109, Jun 2008.
[27] Y.-C. Tzeng, C.-Y. Ju, G.-Y. Chen, and W.-M. Huang, “Hunting for the non-hermitian exceptional points with fidelity susceptibility,” Phys. Rev. Research, vol. 3, p. 013015, Jan 2021.
[28] Y.-T. Tu, I. Jang, P.-Y. Chang, and Y.-C. Tzeng, “General properties of fidelity in non-hermitian quantum systems with PT symmetry,” Quantum, vol. 7, p. 960, mar 2023.