簡易檢索 / 詳目顯示

研究生: 程上芬
Shang-Fen Cheng
論文名稱: 以mPEG-PLGA接枝超順磁性氧化鐵作為多功能藥物載體之應用
指導教授: 李育德
Yu-Der Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: 超順磁性奈米氧化鐵mPEG-PLGA 兩性高分子藥物傳輸磁振造影
外文關鍵詞: superparamagnetic iron oxide, mPEG-PLGA, drug delivery, MRI
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用低毒性及生物相容性佳的生醫材料進行實驗,結合了MRI磁振造影及藥物制放兩種應用,開發出具多功能用途的奈米載體。
    實驗分成兩大部分,一為合成表面具有-OH官能基之奈米氧化鐵,控制其粒徑大小,使之具有低磁矯頑力(Hci)及高飽和磁化量(Ms)的性質,稱之為超順磁性奈米氧化鐵(superparamagnetic iron oxide,SPIO)。第二部份為合成同時具親水及疏水端的mPEG-PLGA兩性高分子,並將PLGA疏水端進行末端改質為Amino silane。最後將改質完成的兩性高分子接枝於超順磁性奈米氧化鐵上,使之同時具有MRI顯影及包覆疏水藥物的功用,而後用於癌症細胞的診斷及治療。
    實驗結果顯示,mPEG-PLGA兩性高分子有合成出所要的分子量,並且末端改質成功;而在氧化鐵方面,也順利合成出超順磁性且具有高飽和磁化量的奈米粒子。將mPEG-PLGA接枝於氧化鐵後,材料經由細胞毒性測試,證實其具有很好的生物相容性,進而可應用於生醫材料。在進行弛豫時間測試中,發現其鬆弛速率r2比起商業產品Resovist○R有大幅的提升,因此有助於提高MRI顯影的訊號強度。在藥物釋放方面,經過實驗測試,可知藥物確實有包覆至奈米粒子中,並且能進行緩釋的功能,有效的毒殺子宮頸癌症細胞(Hela Cell)。
    實驗並未進行in vivo活體實驗,但經由in vitro體外細胞實驗證實有可行性存在,而藥物釋放方面,雖然不具有主動靶向的功能,但利用RES網狀內皮系統及EPR effect被動靶向的作用,藥物仍可以有效的帶到病症細胞以進行治療。


    摘要 謝誌 總目錄 圖目錄 表目錄 方程式目錄 第一章 緒論 第二章 文獻回顧 2-1醫藥高分子材料 2-1-1 概述 2-1-2 生物可相容的降解性高分子種類 2-1-3 聚乳酸(PLA)、聚甘醇酸(PGA)與其共聚物(PLGA)的應用 2-2 藥物控制釋放 2-2-1 一般藥物控制釋放的機制 2-2-2 奈米藥物的控制釋放 2-2-2-1 概述 2-2-2-2 奈米藥物制放對腫瘤細胞的治療 2-2-3 mPEG-PLGA 於藥物控制釋放的應用 2-2-4 抗癌物藥紫杉醇的應用 2-3 磁性材料 2-3-1 磁性的來源 2-3-2 磁學基本定義 2-3-3 奈米微粒的磁特性 2-3-4 磁性流體 2-3-5 Fe3O4磁性流體之製備 2-4 磁振造影 2-4-1 磁振造影簡介 2-4-2 超順磁奈米氧化鐵在磁振造影上的應用 第三章 研究動機及目的 第四章 實驗部分 4-1 實驗藥品 4-2 實驗儀器 4-3 實驗流程 4-4 實驗步驟 4-4-1 合成不同分子量的mPEG-PLGA,並將末端改質為amino silane 4-4-2 氧化鐵磁性流體的製備 4-4-3 將mPEG-PLGA-silane接枝於Fe3O4奈米粒子上 4-4-4 高分子修飾後之奈米氧化鐵粒子包覆paclitaxel 4-4-5 高分子修飾後之奈米氧化鐵粒子包覆paclitaxel釋放行為 4-4-6 體外細胞實驗(in vitro biological test) 第五章 結果與討論 5-1 MPEG-PLGA COPOLYMER之合成 5-1-1 mPEG-PLGA結構分析 5-1-1-1 mPEG-PLGA 1H-NMR 之結構鑑定 5-1-1-2 mPEG-PLGA之FT-IR結構分析 5-1-2 mPEG-PLGA改質為mPEG-PLGA-COOH 5-1-3 mPEG-PLGA-COOH改質為mPEG-PLGA-Silane 5-1-4 GPC分子量測定 5-2 FE3O4磁性流體之合成 5-2-1 Fe3O4之XRD晶格分析 5-2-2 Fe3O4粒徑分析 5-2-2-1 DLS粒徑分析 5-2-2-2 TEM 粒徑分析 5-2-3 VSM磁性測試 5-3 FE3O4與COPOLYMER接枝前後之FT-IR分析 5-4 FE3O4接枝後之粒徑分析 5-5 鬆弛速率R1、R2之測試 5-6 藥物PACLITAXEL的釋放 5-7 細胞實驗 5-7-1接枝後之Fe3O4對L-929細胞毒性測試(Cell Toxicity) 5-7-2載藥奈米粒子之細胞毒殺測試(Cell Uptake) 第六章 結論與未來展望 第七章 參考文獻

    1.馬光輝、蘇志國主編,新型高分子材料,曉園出版社,(2006)。
    2.黃博偉、李維欽主編,生物可分解高分子之應用與產品研究-以生醫材料為例,經濟處技術處,(2004)。
    3.李玉寶主編,奈米生醫材料,五南圖書出版公司,(2006)。
    4.J. M. Anderson, M. S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres, Advanced Drug Delivery Reviews, 28 , 5–24 (1997).
    5.Y. Hiraoka , Y. Kimura , H. Ueda , Y. Tabata, Fabrication and biocompatibility of collagen sponge reinforced with poly(glycolic acid) fiber, Tissue Engineering, 9, 1101-1112 ( 2003) .
    6.K. Leong , P Damore , M Marletta , R Langer, Bioerodible Polyanhyderides as drug-carrier matrices, Biocompatibility And Chemical-Reactivity, Journal of biomedical materials research, 20, 51-64 (1986).
    7.S. Stolnik , L.Illum , S. Davis, Long Circulating microparticulate drug carriers, Advanced Drug Delivery Reviews, 16, 195-214 (1995).
    8.J. Hellera, J. Barra, S. Y. Nga, K. S. Abdellauoib, R. Gurny, Poly (ortho esters): synthesis, characterization, properties and uses, Advanced Drug Delivery Reviews, 54, 1015–1039 (2002).
    9.G. Pitarresi, F. Saiano, G. Cavallaro, D. Mandracchia, F.S. Palumbo, A new biodegradable and biocompatible hydrogel with polyaminoacid structure, International Journal of Pharmaceutics, 335, 130–137 (2007).
    10.S. Fuchs, T. Kapp, H. Otto, T. Schneberg, P. Franke, R. Gust, A. Dieter Schl, A surface-modified dendrimer set for potential application as drug delivery vehicles: Synthesis, in vitro toxicity, and intracellular localization, Chemistry, European journal, 10, 1167-1192 (2004).
    11.R. A. Jain, “The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices”, Biomaterials, 21, 2475-2490 (2000).
    12.王盈錦主編,生物醫學材料,合記圖書出版社,(2002)。
    13.V. P. Torchilin, “Structure and design of polymeric surfactant-based drug delivery systems” Journal of Controlled Release, 73, 137–172 (2001)
    14.K. Avgoustakis, A. Beletsi, Z. Panagi, P. Klepetsanis, E. Livaniou, G. Evangelatos and Ithakissios DS, “Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles”, International Journal of Pharmaceutics 259, 115-127 (2003).
    15.J. Khandare , T. Minko, “Polymer–drug conjugates: Progress in polymeric prodrugs”, Prog. Polym. Sci., 31, 359–397 (2006).
    16.葉紹任等編著, ”隱藏性奈米高阧微胞的藥物輸送應用”, 化工資訊與商情, 26, 60-66 (2005)。
    17.J. H. Parka, S. Leeb, J.H. Kimb, K.n Parkb, K. Kimb, I. C. Kwonb, Polymeric nanomedicine for cancer therapy, Prog. Polym. Sci. 33, 113–137 (2008).
    18.A. Yang, L. Yang, W. Liu, Z. Li, H. Xu and X. Yang, “Tumor necrosis factor alpha blocking peptide loaded PEG-PLGA nanoparticles: Preparation and in vitro evaluation”, International Journal of Pharmaceutics, 331, 123–132 (2007).
    19.A. Beletsi, L. Leontiadis, P. Klepetsanis, D.S. Ithakissios and K. Avgoustakis, “Effect of preparative variables on the properties of
    20.A. Beletsi, L. Leontiadis, P. Klepetsanis, D.S. Ithakissios, K. Avgoustakis, Effect of preparative variables on the properties of poly(dl-lactide-co-glycolide) methoxypoly(ethyleneglycol) copolymers related to their application in controlled drug delivery, International Journal of Pharmaceutics 182, 187–197 (1999).
    21.Y. Zhang, N. Kohler, M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials, 23, 1553–1561 (2002).
    22.E.K. Rowinsky, R.C. Donehower, Paclitaxel (Taxol), N. Engl. J. Med, 332, 1004– 1014 (1995).
    23.O. Soga, Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery, Journal of Controlled Release, 103, 341–353 (2005).
    24.H. Gelderblom, J. Verweij, K. Nooter, A. Sparreboom, Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation, Eur. J. Cancer, 37, 1590– 1598 (2001).
    25.Product Information:Taxol, Paclitaxel. Mead Johnson, Oncology Products, Princeton, NJ, USA, reviewed (2000).
    26.R.T. Liggins, H.M. Burt, Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations, Adv. Drug Deliv. Rev. 54, 191– 202, (2002).
    27.S.C. Kim, D.W. Kim, Y.H. Shim, J.S. Bang, H.S. Oh, S. Wan Kim, M.H. Seo, In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy, J. Control. Release, 72, 191– 202 (2001).
    28.L. He, G.L. Wang, Q. Zhang, An alternative paclitaxel microemulsion formulation: hypersensitivity evaluation and pharmacokinetic profile, Int. J. Pharm. 250, 45– 50 (2003).
    29.P.P. Constantinides, K.J. Lambert, A.K. Tustian, B. Schneider, S. Lalji, W. Ma, B. Wentzel, D. Kessler, D. Worah, S.C. Quay, Formulation development and antitumor activity of a filtersterilizable emulsion of paclitaxel, Pharm. Res, 17, 175– 182 (2000).
    30.G.M. Zentner, R. Rathi, C. Shih, J.C. McRea, M.H. Seo, H. Oh, B.G. Rhee, J. Mestecky, Z. Moldoveanu, M. Morgan, S. Weitman, Biodegradable block copolymers for delivery of proteins and water-insoluble drugs, J. Control. Release, 72, 203–215 (2001).
    31.T. Ooya, J. Lee, K. Park, Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel, J. Control. Release, 93, 121–127 (2003).
    32.G.M. Zentner, R. Rathi, C. Shih, J.C. McRea, M.H. Seo, H. Oh, B.G. Rhee, J. Mestecky, Z. Moldoveanu, M. Morgan, S. Weitman, Biodegradable block copolymers for delivery of proteins and water-insoluble drugs, J. Control. Release, 72, 203–215 (2001).
    33.A. Sharma, R.M. Straubinger, Novel Taxol formulations—preparation and characterization of Taxol-containing liposomes, Pharm. Res, 11, 889–896 (1994).
    34.H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, J. Control. Release, 65, 271–284 (2000).
    35.馬振基主編,奈米材料科技原理與應用,全華科技圖書,(2003)。
    36.吳劍秋主編,基礎電磁學,全華科技圖書股份有限公司,(1996)。
    37.曹茂盛等編著,奈米材料導論,學富文化事業有分公司,(2002)。
    38.陳育裕, “鐵氧超微粉之製備研究”, 成功大學化學工程研穿所碩士論文,(1998)。
    39.張立德編著,奈米磁性材料-磁性液體,五南圖書出版股份有限公司,(2002)。
    40.S. Lian, Z. Kanga, E. Wang, M. Jiang, C. Hu, L. Xu, Convenient synthesis of single crystalline magnetic Fe3O4 nanorods, Solid State Commun, 127, 605–608 (2003).
    41.L. Shen, PE. Laibinis, TA. Hatton. Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir, 15 ,447–453 (1999).
    42.DK. Kim, M. Mikhaylova, Y. Zhang, M. Muhammed, Protectivecoating of superparamagnetic iron oxide nanoparticles, Chem, 15, 1617–1627 (2003).
    43.LA. Harris, JD. Goff, AY. Carmichael, JS. Riffle, JJ. Harburn, TG. St. Pierre, M.Saunders, Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater, 15, 1367–1377 (2003).
    44.S. Wan, Y. Zheng, Y. Liu, H .Yan, K. Liu. Fe3O4 nanoparticles coated with homopolymers of glycerol mono(meth)acrylate and their block copolymers, J Mater Chem, 15, 3424–3430 (2005).
    45.M, Shinkai, Functional magnetic particles for medical application, Journal of bioscience and bioengineering, 94, 606-613 (2002).
    46.S. Sieben, C. Bergemann, B. Brockmann, D. Rescheleit. Comparison of different particles and methods for magnetic isolation of circulating tumor cells, J Magn Magn Mater, 225, 175–179 (2001).
    47.SA. Omez-Lopera, RC. Plaza, AV. Delgado, Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles, J Colloid Interface Sci, 240, 40–47 (2001).
    48.Z. Guo, S. Bai, Y. Sun, Enzyme, Microb. Technol, 32, 776 (2003).
    49.F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard, J. Degrouard, J. Hoebeke, E. Duguet, P. Colombo, P. Couvreur, Folate- conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments, Bioconjug Chem, 16, 1181–1188 (2005).
    50.Wan S, Huang J, Yan H, Liu K. Sized-controlled preparation of magnetic nanoparticles in the presence of graft copolymers. J Mater Chem 2006;16:298–303.
    51.DK. Kim, Y. Zhang, J. Kehr, T. Klason, B. Bjelke, M. Muhammed, Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain, J Magn Magn Mater, 225, 256–261(2001).
    52.A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications”, Biomaterial, 26, 3995-4021 (2005).
    53.W. Zheng, F.Gao and H. Gu, “Magnetic polymer nanospheres with high and uniform magnetite content”, Journal of Magnetism and Magnetic Materials, 288, 403-410 (2005).
    54.D. K. Kim, M. Mikhaylova, Y. Zhang, and M. Muhammed, “Protective Coating of Superparamagnetic Iron Oxide Nanoparticles”, Chem. Mater., 15, 1617-1627 (2003).
    55.Y.K. Sun, M. Ma, Y. Zhang, N. Gu, Synthesis of nanometer-size maghemite particles from magnetite, Colloids Surf A: Physicochem Eng Aspects, 245, 15-19 (2004).
    56.D. K. Kim, Y.Zhang, W.Voit, K. V. Rao, M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials, 225, 30-36 (2001).
    57.R.Vijayakumar, Y.Koltypin, I. Felner, A.Gedanken, Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles, Mater. Sci. Eng., A286, 101 (2000).
    58.K. Suri, S. Annapoorni, R. P. Tandon, N. C. Mehra, Nanocomposite of polypyrrole-iron oxide by simultaneous gelation and polymerization, 126, 137-14 (2002).
    59. Y. S. Kang, S. Risbud, J. F. Rabolt, P. Stroeve, Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles, Chem. Mater, 8, 2209-2211 (1996).
    60.黃韋翔,四氧化三鐵奈米粒子在核磁共振造影顯影劑的應用,成功大學化學研究所碩士班,(2004)。
    61.王正一主編,醫學工程原理與應用,中正書局,(1996)。
    62.D. D. Stark, R. Weissleder, Elizondo E, Superparamagnetic iron oxide:Clinical application as acontrastagent for MRimaging of the liver. Radiology, 168, 297 (1988).
    63.Y.X. J. Wang, S. M. Hussain, G. P. Krestin, Superparamagnetic iron oxide contrast agents physicochemical characteristics and applications in MR imaging, European Radiology, 11, 2319-2331 (2001)
    64.D. R. Warakaulle, P. Anslow, Differential diagnosis of intracranial lesions with high signal on T1 or low signal on T2-weighted MRI, Clinical Radiology, 58, 922–933 (2003)
    65.M. Ma, Y. Zhang, W. Yu, H. y. Shen, H, Q. Zhang and N. Gu, “Preparation and characterization of a magnetite nanoparticles coated by amino silane”, Colloids and Surfaces, 212, 219-226 (2003).
    66.M. Yamaura, R. L. Camilo, L. C. Sampaio, M.A. Macedo, M. Nakamura and H. E. Toma, “Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoprrticles”, Journal of Magetism and Magnetic Materials, 297, 210-217 (2004).
    67.F.Y. Chenga, C. H. Sua, Y.S. Yanga, C.S. Yeha, C. Y. Tsaib, C. L. Wub, M.T. Wu and D. B. Shieh, “Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications”, Biomaterials, 26, 729–738 (2005).
    68.G. Pasut, F. Caboi, R. Schrepfer, G. Tonon, O. Schiavon, F.M. Veronese, New active poly(ethylene glycol) derivative for amino coupling, Reactive & Functional Polymers, 67, 529–539 (2007).
    69.V. Cabuil, Phase behavior of magnetic nanoparticles dispersions in bulk and confined geometries, Current Opinion in Colloid & Interface Science, 5, 44-48 (2000).
    70.A. K. Guptaa, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995–4021 (2005).
    71.D.H. Han, J.P. Wang, H.L. Luo. Crystallite size effect on saturation magnetization of fine ferrimagnetic particles, J Magn Magn Mater, 136, 176-182 (1994)
    72.M. C. Bautista , O. Bomati-Miguel , X. Zhao , M. P .Morales, T. Gonzalez-Carreno, R,P. de Alejo, J. Ruiz-Cabello, S. Veintemillas-Verdaguer, Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging, Nanotechnology, 15, S154–S159 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE