研究生: |
蘇科銓 Su, Ko Chuan |
---|---|
論文名稱: |
研究先進連接板材應用於固態氧化物燃料電池 Development of advanced interconnect alloys for SOFC interconnect application |
指導教授: |
葉安洲
Yeh, An Chou 張士欽 Chang, Shih Chin |
口試委員: |
黃金川
蔡哲瑋 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 固態氧化物燃料電池 、金屬連接板 、成形性 、釔 、晶界工程 |
外文關鍵詞: | SOFC, Metallic interconnect, Formability, Yttrium, Grain boundary engineering |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用Gleeble-3500熱機模擬器搭配CALPHAD-base Jmatpro及Deform-3D模擬軟體對鎳基CMH1、鎳鐵基CMH2與鐵基CMH3進行成形性實驗,並評斷其成形能力。探討添加100 ppm釔對鎳基SCY1、鎳鐵基SCY2及鐵基SCY3連接版應用特性的影響,除此之外,也探討晶界工程對CMH3連接版應用特性的影響。此研究中的連接版應用特性包括於800°C下:抗氧化能力試驗、面積比電阻值(ASR)、熱膨脹係數量測(CTE)以及鉻揮發趨勢。
使用電子天秤量測氧化增重的變化,四點探針量測高溫的材料電阻,熱機分析(TMA)熱膨脹的變化,化學反應附著粉末分析以檢測鉻揮發的多寡,實驗儀器囊括Gleeble熱機模擬器之壓縮模式、拋光研磨機、光學顯微鏡、電子顯微鏡、高溫爐、電弧熔煉爐、放電線切割機、二次離子質譜儀。研究結果顯示,鎳基CMH1之成形性差;鎳鐵基CMH2和鐵基CMH3之成形性良好。添加100 ppm釔能提升SCY1、SCY2及SCY3之抗氧化能力與高溫電性。於鉻揮發的表現,添加釔對SCY1和SCY3能降低鉻揮發,但對SCY2而言,添加釔之後,其鉻揮發變嚴重。另一方面,晶界工程處理的試片(RX2與STA1)與CMH3相比具較好的抗氧化能力與高溫電性。和CMH3比較,RX2試片有較低的鉻揮發,但STA1卻有較高的鉻揮發。除此之外,氧化增重結果也需要考慮材料的鉻揮發的影響。添加釔與晶界工程處理的試片,其熱膨脹係數沒有明顯得變化。
In present study, the formability of Ni-based CMH1, Ni-Fe-based CMH2, and Fe-based CMH3 has been evaluated by the Gleeble-3500 thermo-mechanical simulator with the assistance of CALPHAD-base Jmatpro and Deform-3D simulation software. The effect of 100 ppm yttrium addition on the properties of interconnect application in SOFCs has been assessed for SCY1, SCY2, and SCY3. In addition, grain boundary engineering (GBE) has been applied to CMH3 to enhance the high temperature properties. Meanwhile, the effect of GBE on the properties of interconnect application in SOFCs has been analyzed. The properties of interconnect application in SOFCs in this study include the oxidation resistance, area specific resistance (ASR), coefficient of thermal expansion (CTE), and Cr evaporation test at 800°C.
Research results indicate that the formability of CMH2 and CMH3 is good while the formability of CMH1 is bad. The addition of 100 ppm yttrium can enhance the oxidation resistance and electrical resistance for SCY1, SCY2, and SCY3. With the addition of yttrium, the Cr evaporation rate has been reduced for SCY1 and SCY3 while the Cr has evaporated more severely in SCY2. There is no difference in the coefficient of thermal expansion with the addition of yttrium. On the other hand, GBE-processed specimens (RX2 and STA1) have shown better oxidation resistance and lower ASR values in comparison to CMH3. The Cr evaporation rate for RX2 is lower while for STA1 is higher compared to CMH3. The oxidation weight change should be evaluated in company with the degree of Cr evaporation. Similarly, the thermal expansion behavior for CMH3, RX2, and STA1 has shown no difference.
[1] R. Baños, F. Manzano-Agugliaro, F.G. Montoya, C. Gil, A. Alcayde, J. Gómez, Renewable and Sustainable Energy Reviews, 15 (2011) 1753-1766.
[2] F.J. Sáez-Martínez, J. Mondéjar-Jiménez, J.A. Mondéjar-Jiménez, Journal of Cleaner Production, 86 (2015) 471-473.
[3] A.B. Stambouli, E. Traversa, Renewable and Sustainable Energy Reviews, 6 (2002) 433-455.
[4] V. Liso, A.C. Olesen, M.P. Nielsen, S.K. Kær, Energy, 36 (2011) 4216-4226.
[5] H.R. Ellamla, I. Staffell, P. Bujlo, B.G. Pollet, S. Pasupathi, J Power Sources, 293 (2015) 312-328.
[6] L. Barelli, G. Bidini, F. Gallorini, P. Ottaviano, International Journal of Hydrogen Energy, 38 (2013) 354-369.
[7] R.T. Leah, N.P. Brandon, P. Aguiar, J Power Sources, 145 (2005) 336-352.
[8] Z.G. Yang, D.M. Paxton, K.S. Weil, J.W. Stevenson, P. Singh, Pacific Northwest National Laboratory, Richland, WA, (2002).
[9] C.-M. Hsu, A.-C. Yeh, W.-J. Shong, C.-K. Liu, Journal of Alloys and Compounds, 656 (2016) 903-911.
[10] P. D.P. Whittle and J. Stringer, Trans. R. Soc. Lond, A27 (1979) 309.
[11] P. Kurzweil, HISTORY | Fuel Cells, in: J. Garche (Ed.) Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 2009, pp. 579-595.
[12] e.J.G. P. Kurzweil, Elsevier, Amsterdam,, in Encyclopedia of Electrochemical Power Sources, (2009) 579-595.
[13] M. Warshay, P.R. Prokopius, J Power Sources, 29 (1990) 193-200.
[14] C. Sun, U. Stimming, J Power Sources, 171 (2007) 247-260.
[15] F. Tietz, A. Mai, D. Stöver, Solid State Ionics, 179 (2008) 1509-1515.
[16] O.Z. Sharaf, M.F. Orhan, Renewable and Sustainable Energy Reviews, 32 (2014) 810-853.
[17] N.Q. Minh, J Am Ceram Soc, 76 (1993) 563-588.
[18] U.D.o. Energy, Fuel Cell Handbook (Seventh Edition), Office of Fossil Energy National Energy Technology Laboratory Morgantown, West Virginia 26507-0880, November 2004.
[19] S.C. Singhal, Solid State Ionics, 135 (2000) 305-313.
[20] Z.G. Yang, K.S. Weil, D.M. Paxton, J.W. Stevenson, J Electrochem Soc, 150 (2003) A1188-A1201.
[21] I. Antepara, I. Villarreal, L.M. Rodriguez-Martinez, N. Lecanda, U. Castro, A. Laresgoiti, J Power Sources, 151 (2005) 103-107.
[22] H. Taroco, J. Santos, R. Domingues, T. Matencio, Ceramic Materials for Solid Oxide Fuel Cells, INTECH Open Access Publisher, 2011.
[23] J.H. Zhu, S.J. Geng, D.A. Ballard, International Journal of Hydrogen Energy, 32 (2007) 3682-3688.
[24] http://www.osakagas.co.jp/en/rd/fuelcell/sofc/sofc/img/sofc_01_img01.jpg
[25] Z.P. Shao, S.M. Haile, Nature, 431 (2004) 170-173.
[26] S.P.S. Badwal, F.T. Ciacchi, Ionics, 6 (2000) 1-21.
[27] Y. Tanaka, A. Momma, K. Kato, A. Negishi, K. Takano, K. Nozaki, T. Kato, Energy Conversion and Management, 50 (2009) 458-466.
[28] M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics, 129 (2000) 63-94.
[29] K. Hassmann, Fuel Cells, 1 (2001) 78-84.
[30] K. Hosoi, M. Nakabaru, ECS Transactions, 25 (2009) 11-20.
[31] W.Z. Zhu, S.C. Deevi, Materials Science and Engineering: A, 362 (2003) 228-239.
[32] S. Jiang, S. Chan, Journal of Materials Science, 39 (2004) 4405-4439.
[33] J.B. Goodenough, Y.-H. Huang, J Power Sources, 173 (2007) 1-10.
[34] J.W. Fergus, Solid State Ionics, 177 (2006) 1529-1541.
[35] J. Richter, P. Holtappels, T. Graule, T. Nakamura, L. Gauckler, Monatsh Chem, 140 (2009) 985-999.
[36] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in Materials Science, 72 (2015) 141-337.
[37] V. Dusastre, J.A. Kilner, Solid State Ionics, 126 (1999) 163-174.
[38] S. Hui, J. Roller, S. Yick, X. Zhang, C. Decès-Petit, Y. Xie, R. Maric, D. Ghosh, J Power Sources, 172 (2007) 493-502.
[39] V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics, 174 (2004) 135-149.
[40] N. Preux, A. Rolle, R.N. Vannier, 12 - Electrolytes and ion conductors for solid oxide fuel cells (SOFCs), in: J.A. Kilner, S.J. Skinner, S.J.C. Irvine, P.P. Edwards (Eds.) Functional Materials for Sustainable Energy Applications, Woodhead Publishing, 2012, pp. 370-401.
[41] S.P.S. Badwal, K. Foger, Ceramics International, 22 (1996) 257-265.
[42] B.C.H. Steele, Solid State Ionics, 129 (2000) 95-110.
[43] K.J. Yoon, C.N. Cramer, J.W. Stevenson, O.A. Marina, J Power Sources, 195 (2010) 7587-7593.
[44] K.J. Yoon, J.W. Stevenson, O.A. Marina, J Power Sources, 196 (2011) 8531-8538.
[45] J.W. Fergus, Materials Science and Engineering: A, 397 (2005) 271-283.
[46] W.J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Mater High Temp, 20 (2003) 115-127.
[47] F. Greco, H.L. Frandsen, A. Nakajo, M.F. Madsen, J. Van herle, Journal of the European Ceramic Society, 34 (2014) 2695-2704.
[48] Y.-T. Chiu, C.-K. Lin, J.-C. Wu, J Power Sources, 196 (2011) 2005-2012.
[49] P.D. Jablonski, D.E. Alman, International Journal of Hydrogen Energy, 32 (2007) 3705-3712.
[50] Z. Yang, G.-G. Xia, J.W. Stevenson, J Power Sources, 160 (2006) 1104-1110.
[51] R. Sachitanand, M. Sattari, J.-E. Svensson, J. Froitzheim, International Journal of Hydrogen Energy, 38 (2013) 15328-15334.
[52] B.C.H. Steele, A. Heinzel, Nature, 414 (2001) 345.
[53] B. Buckner, H. Landes, B. Rathjen, Solid Oxide Fuel Cells, 1993
[54] P. Yang, C.-K. Liu, J.-Y. Wu, W.-J. Shong, R.-Y. Lee, C.-C. Sung, J Power Sources, 213 (2012) 63-68.
[55] J. Wu, X. Liu, Journal of Materials Science & Technology, 26 (2010) 293-305.
[56] B.C.H. Steele*, Solid State Ionics, 134 (2000) 3-20.
[57] M. Bertoldi, T. Zandonella, D. Montinaro, V.M. Sglavo, A. Fossati, A. Lavacchi, C. Giolli, U. Bardi, J Fuel Cell Sci Tech, 5 (2008) 011001-011001.
[58] B. Hua, J. Pu, F. Lu, J. Zhang, B. Chi, L. Jian, J Power Sources, 195 (2010) 2782-2788.
[59] W. Zhang, D. Yan, J. Yang, J. Chen, B. Chi, J. Pu, J. Li, J Power Sources, 271 (2014) 25-31.
[60] R. Lacey, A. Pramanick, J.C. Lee, J.-I. Jung, B. Jiang, D.D. Edwards, R. Naum, S.T. Misture, Solid State Ionics, 181 (2010) 1294-1302.
[61] M. Stanislowski, J. Froitzheim, L. Niewolak, W.J. Quadakkers, K. Hilpert, T. Markus, L. Singheiser, J Power Sources, 164 (2007) 578-589.
[62] S.P. Jiang, X. Chen, International Journal of Hydrogen Energy, 39 (2014) 505-531.
[63] T. Uehara, N. Yasuda, M. Okamoto, Y. Baba, J Power Sources, 196 (2011) 7251-7256.
[64] D.J. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Chemical Society Reviews, 37 (2008) 1568-1578.
[65] L. Pfeil, (1937).
[66] P. Hou, J. Stringer, Materials Science and Engineering: A, 202 (1995) 1-10.
[67] D. Gratias, R. Portier, Le Journal de Physique Colloques, 43 (1982) C6-15-C16-24.
[68] M. Winning, G. Gottstein, L.S. Shvindlerman, Acta Materialia, 49 (2001) 211-219.
[69] M. Winning, Acta Materialia, 51 (2003) 6465-6475.
[70] M. Winning, A.D. Rollett, Acta Materialia, 53 (2005) 2901-2907.
[71] W.T. Read, W. Shockley, Physical Review, 78 (1950) 275-289.
[72] D.G. Brandon, Acta Metallurgica, 14 (1966) 1479-1484.
[73] V. Randle, Mater. Sci. Technol., 26 (2010) 253-261.
[74] B.S. Gertsman VY, Acta Materialia, 49 (2001) 1589.
[75] T. Watanabe, Res Mechanica, 11 (1984) 47-84.
[76] L. Tan, K. Sridharan, T.R. Allen, R.K. Nanstad, D.A. McClintock, Journal of Nuclear Materials, 374 (2008) 270-280.
[77] B.W. Reed, M. Kumar, R.W. Minich, R.E. Rudd, Acta Materialia, 56 (2008) 3278-3289.
[78] M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai, Acta Materialia, 54 (2006) 5179-5184.
[79] L. Tan, K. Sridharan, T.R. Allen, Journal of Nuclear Materials, 371 (2007) 171-175.
[80] S. Yang, Z. Wang, H. Kokawa, Y.S. Sato, Materials Science and Engineering: A, 474 (2008) 112-119.
[81] V. Randle, Acta Materialia, 47 (1999) 4187-4196.
[82] H. Gleiter, Acta Metallurgica, 17 (1969) 1421-1428.
[83] V. Randle, P. Davies, B. Hulm, Philosophical Magazine A, 79 (1999) 305-316.
[84] T. Watanabe, H. Fujii, H. Oikawa, K. Arai, Acta Metallurgica, 37 (1989) 941-952.
[85] K.H. Song, Y.B. Chun, S.K. Hwang, Materials Science and Engineering: A, 454–455 (2007) 629-636.
[86] N. Saunders, U. Guo, X. Li, A. Miodownik, J.-P. Schillé, JOM, 55 (2003) 60-65.
[87] J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad, 26 (2002) 273-312.
[88] R. Doherty, D. Hughes, F. Humphreys, J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, A. Rollett, Materials Today, 1 (1998) 14-15.
[89] T. Sakai, J.J. Jonas, Acta Metallurgica, 32 (1984) 189-209.
[90] Y.-j. CHEN, J. Hjelen, H.J. Roven, Transactions of Nonferrous Metals Society of China, 22 (2012) 1801-1809.
[91] K. Mingard, B. Roebuck, E. Bennett, M. Gee, H. Nordenstrom, G. Sweetman, P. Chan, International Journal of Refractory Metals and Hard Materials, 27 (2009) 213-223.
[92] V. Randle, The role of the coincidence site lattice in grain boundary engineering, Maney Pub, 1996.
[93] http://www.dop.nsysu.edu.tw/files/archive/174_f714db6e.bmp
[94] G.E. Dieter, H.A. Kuhn, S.L. Semiatin, Handbook of workability and process design, ASM international, 2003.
[95] G.E. Dieter, H.A. Kuhn, S.L. Semiatin, Handbook of workability and process design, ASM international, 2003.
[96] G.E. Dieter, D.J. Bacon, Mechanical metallurgy, McGraw-Hill New York, 1986.
[97] D.W. Yun, H.S. Seo, J.H. Jun, J.M. Lee, D.H. Kim, K.Y. Kim, International Journal of Hydrogen Energy, 36 (2011) 5595-5603.
[98] N. Sakai, T. Horita, Y.P. Xiong, K. Yamaji, H. Kishimoto, M.E. Brito, H. Yokokawa, T. Maruyama, Solid State Ionics, 176 (2005) 681-686.
[99] A. Petric, H. Ling, J Am Ceram Soc, 90 (2007) 1515-1520.
[100] N. Birks, G. Meier, Reino Unido, (1983).
[101] D. Douglass, F. Rizzo-Assuncao, Oxidation of metals, 29 (1988) 271-287.
[102] Z. Chen, L. Wang, F. Li, K. Chou, High Temperature Materials and Processes, 33 (2014) 439-445.
[103] Z. Yang, G.-G. Xia, X.-H. Li, J.W. Stevenson, International Journal of Hydrogen Energy, 32 (2007) 3648-3654.
[104] S.V. Quadakkers WJ, Singheiser L. , US Patent Application Publication, No. US 2003/0059335 A1 (March 27, 2003).
[105] T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, H. Yokokawa, Solid State Ionics, 179 (2008) 1320-1324.
[106] T. Horita, H. Kishimoto, K. Yamaji, Y. Xiong, N. Sakai, M.E. Brito, H. Yokokawa, J Power Sources, 176 (2008) 54-61.