研究生: |
蕭雅文 Hsiao, Ya-Wen |
---|---|
論文名稱: |
利用脂質/中孔矽殼包覆硫化鉍之奈米藥物於胰臟癌化學/放射合併治療應用 Development of drug loaded lipid/mesoporous silica-coated Bi2S3 nanotherapeutics for combined chemo/radiotherapy against pancreatic cancer |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
駱俊良
Lo, Chun-Liang 姜文軒 Chiang, Wen-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | SN38 、rapamycin 、硫化鉍奈米棒 、電腦斷層顯影 |
外文關鍵詞: | SN38, rapamycin, Bi2S3 nanorod, CT contrast enhancement |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發脂質/中孔矽殼包覆硫化鉍之奈米藥物,搭載SN38與rapamycin兩種藥物,結合化學及放射治療應用於胰臟癌之治療。本研究利用以水熱法合成硫化鉍奈米棒,並利用中孔矽殼修飾提供拓樸異構酶抑制劑一型SN38裝載的空間,再透過脂質薄膜的包覆搭載mTOR抑制劑rapamycin並提升載體的膠體穩定性。研究中製備出的奈米載體具有均一大小的尺寸且藥物包覆率可達70%以上,亦在實驗中證實此載體具有電腦斷層(CT) 之顯影能力。細胞實驗中顯示此奈米載體可透過胞吞作用進入胰臟癌細胞UN-KC-6141中,透過細胞毒性分析確認載體所搭載之藥物可有效毒殺癌細胞,結合放射治療照射抑制細胞的增殖能力。此外,動物實驗中發現奈米載體可經由循環系統累積至腫瘤區域。結合以上成果,本研究所開發搭載雙藥物之奈米載體,其顯影能力可輔助胰臟癌之診斷,並結合化學/放射複合療法,抑制癌細胞的生長。
Our research aims to develop a lipid/ mesoporous silica coated Bi2S3 nanorod which was loaded with SN38 and rapamycin. In combination of chemotherapy and radiotherapy for pancreatic cancer treatment. In this study, we synthesized bismuth sulfide by hydrothermal method, then coated with mesoporous silica for SN38 loading. We coated lipid film to improve colloidal stability, and loaded rapamycin at the same time. The drug loaded nanoparticles showed a uniform size distribution with drug loading efficiency over 70% and contrast enhancement in CT imaging. In vitro data proved that our nanoparticles enter UN-KC-6141 cells by endocytosis, and killed the cells by the drug which were carried by the particles. In addition, in the subcutaneous pancreatic cancer model showed the nanoparticles were able to accumulate in the tumor. In conclusion, we developed a nanomedicine helpful for pancreatic cancer diagnosis by the CT contrast enhanced ability, and combined chemo and radiotherapy to inhibit cell proliferation.
1. Society, A.C. Key Statistics for Pancreatic Cancer. 2022; Available from: https://www.cancer.org/cancer/pancreatic-cancer/about/key-statistics.html.
2. Siegel, R.L., et al., Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 2022. 72(1): p. 7-33.
3. 衛生福利部. 癌症登記報告. Available from: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=119.
4. Mizrahi, J.D., et al., Pancreatic cancer. The Lancet, 2020. 395(10242): p. 2008-2020.
5. Ansari, D., et al., Pancreatic cancer: yesterday, today and tomorrow. Future oncology, 2016. 12(16): p. 1929-1946.
6. 台灣癌症防治網. 認識胰臟癌. Available from: http://web.tccf.org.tw/lib/project/books/book02.php.
7. Centre, R.M. PANCREATIC CANCER: SYMPTOMS, TYPES, CAUSES & TREATMENT. Available from: https://www.regencymedicalcentre.com/blog/pancreatic-cancer-symptoms-types-causes-and-reatment/.
8. Zhang, L., S. Sanagapalli, and A. Stoita, Challenges in diagnosis of pancreatic cancer. World journal of gastroenterology, 2018. 24(19): p. 2047.
9. Springfeld, C., et al., Chemotherapy for pancreatic cancer. La Presse Medicale, 2019. 48(3): p. e159-e174.
10. Saung, M.T. and L. Zheng, Current standards of chemotherapy for pancreatic cancer. Clinical therapeutics, 2017. 39(11): p. 2125-2134.
11. Samanta, K., et al., Gemcitabine combination nano therapies for pancreatic cancer. Pharmaceutics, 2019. 11(11): p. 574.
12. Adamska, A., et al., Molecular and cellular mechanisms of chemoresistance in pancreatic cancer. Advances in biological regulation, 2018. 68: p. 77-87.
13. Lee, H.S. and S.W. Park, Systemic chemotherapy in advanced pancreatic cancer. Gut and liver, 2016. 10(3): p. 340.
14. Neoptolemos, J.P., et al., Therapeutic developments in pancreatic cancer: current and future perspectives. Nature reviews Gastroenterology & hepatology, 2018. 15(6): p. 333-348.
15. Meng, H. and A.E. Nel, Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Advanced drug delivery reviews, 2018. 130: p. 50-57.
16. Ho, W.J., E.M. Jaffee, and L. Zheng, The tumour microenvironment in pancreatic cancer—clinical challenges and opportunities. Nature reviews Clinical oncology, 2020. 17(9): p. 527-540.
17. Kota, J., et al., Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer letters, 2017. 391: p. 38-49.
18. Tarannum, M., et al., Nanoparticle combination for precise stroma modulation and improved delivery for pancreatic cancer. Journal of Controlled Release, 2022. 347: p. 425-434.
19. Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 1986. 46(12_Part_1): p. 6387-6392.
20. Maeda, H., et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release, 2000. 65(1-2): p. 271-284.
21. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nano-Enabled Medical Applications, 2020: p. 61-91.
22. Subhan, M.A., et al., Recent advances in tumor targeting via EPR effect for cancer treatment. Journal of personalized medicine, 2021. 11(6): p. 571.
23. Abdalla, A.M., et al., Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 2018. 8(2): p. 533.
24. Cho, K., et al., Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 2008. 14(5): p. 1310-1316.
25. Sun, T., et al., Engineered nanoparticles for drug delivery in cancer therapy. Nanomaterials and Neoplasms, 2021: p. 31-142.
26. Salvioni, L., et al., Thirty years of cancer nanomedicine: success, frustration, and hope. Cancers, 2019. 11(12): p. 1855.
27. Zhang, C., et al., Progress, challenges, and future of nanomedicine. Nano Today, 2020. 35: p. 101008.
28. Ajiboye, T.O. and D.C. Onwudiwe, Bismuth sulfide based compounds: properties, synthesis and applications. Results in Chemistry, 2021. 3: p. 100151.
29. He, R., et al., Preparation of Bi2S3 nanowhiskers and their morphologies. Journal of crystal growth, 2003. 252(4): p. 505-510.
30. Salavati-Niasari, M., et al., Hydrothermal synthesis of bismuth sulfide (Bi2S3) nanorods: bismuth (III) monosalicylate precursor in the presence of thioglycolic acid. Journal of Cluster Science, 2013. 24(1): p. 349-363.
31. Panigrahi, P.K. and A. Pathak, The growth of bismuth sulfide nanorods from spherical-shaped amorphous precursor particles under hydrothermal condition. Journal of Nanoparticles, 2013. 2013.
32. Chauhan, V.P., et al., Fluorescent nanorods and nanospheres for real‐time in vivo probing of nanoparticle shape‐dependent tumor penetration. Angewandte Chemie, 2011. 123(48): p. 11619-11622.
33. Yang, H., et al., The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window. Journal of colloid and interface science, 2020. 565: p. 186-196.
34. Arumugam, J., et al., Exploring and fine tuning the properties of one dimensional Bi2S3 nanorods. Journal of Alloys and Compounds, 2022. 902: p. 163785.
35. Liu, J., et al., Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS nano, 2015. 9(1): p. 696-707.
36. Lusic, H. and M.W. Grinstaff, X-ray-computed tomography contrast agents. Chemical reviews, 2013. 113(3): p. 1641-1666.
37. Gomez, C., et al., Medical Applications of Metallic Bismuth Nanoparticles. Pharmaceutics, 2021. 13(11): p. 1793.
38. Narayan, R., et al., Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics, 2018. 10(3): p. 118.
39. Li, Z., et al., Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 2012. 41(7): p. 2590-2605.
40. Mamaeva, V., C. Sahlgren, and M. Lindén, Mesoporous silica nanoparticles in medicine—Recent advances. Advanced drug delivery reviews, 2013. 65(5): p. 689-702.
41. Janjua, T.I., et al., Clinical translation of silica nanoparticles. Nature Reviews Materials, 2021. 6(12): p. 1072-1074.
42. Slowing, I.I., et al., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced drug delivery reviews, 2008. 60(11): p. 1278-1288.
43. Kankala, R.K., et al., Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Advanced materials, 2020. 32(23): p. 1907035.
44. Pal, N., J.-H. Lee, and E.-B. Cho, Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles. Nanomaterials, 2020. 10(11): p. 2122.
45. Butler, K.S., et al., Protocells: modular mesoporous silica nanoparticle‐supported lipid bilayers for drug delivery. small, 2016. 12(16): p. 2173-2185.
46. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery, 2005. 4(2): p. 145-160.
47. Drummond, D.C., et al., Development of a highly stable and targetable nanoliposomal formulation of topotecan. Journal of controlled release, 2010. 141(1): p. 13-21.
48. Ashley, C.E., et al., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature materials, 2011. 10(5): p. 389-397.
49. Durfee, P.N., et al., Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS nano, 2016. 10(9): p. 8325-8345.
50. Tan, S., et al., Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale, 2013. 5(3): p. 860-872.
51. de Man, F.M., et al., Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clinical pharmacokinetics, 2018. 57(10): p. 1229-1254.
52. Si, J., et al., Advances in delivery of Irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. International Journal of Pharmaceutics, 2019. 568: p. 118499.
53. Pommier, Y., Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer, 2006. 6(10): p. 789-802.
54. Bala, V., et al., Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. Journal of controlled release, 2013. 172(1): p. 48-61.
55. Bala, V., et al., Lipophilic prodrugs of SN38: synthesis and in vitro characterization toward oral chemotherapy. Molecular pharmaceutics, 2016. 13(1): p. 287-294.
56. Wu, C., et al., Novel SN38 derivative-based liposome as anticancer prodrug: an in vitro and in vivo study. International journal of nanomedicine, 2019. 14: p. 75.
57. Omura, M., S. Torigoe, and N. Kubota, SN-38, a metabolite of the camptothecin derivative CPT-11, potentiates the cytotoxic effect of radiation in human colon adenocarcinoma cells grown as spheroids. Radiotherapy and oncology, 1997. 43(2): p. 197-201.
58. Kim, J.-S., et al., Radiation enhancement by the combined use of topoisomerase I inhibitors, RFS-2000 or CPT-11, and topoisomerase II inhibitor etoposide in human lung cancer cells. Radiotherapy and oncology, 2002. 62(1): p. 61-67.
59. Tamura, K., et al., Enhancement of tumor radio‐response by irinotecan in human lung tumor xenografts. Japanese journal of cancer research, 1997. 88(2): p. 218-223.
60. Okuno, T., et al., SN-38 Acts as a Radiosensitizer for Colorectal Cancer by Inhibiting the Radiation-induced Up-regulation of HIF-1α. Anticancer Research, 2018. 38(6): p. 3323-3331.
61. Liu, C., et al., The molecular mechanisms of increased radiosensitivity of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC): an extensive review. Journal of Otolaryngology-Head & Neck Surgery, 2018. 47(1): p. 1-8.
62. Li, J., S.G. Kim, and J. Blenis, Rapamycin: one drug, many effects. Cell metabolism, 2014. 19(3): p. 373-379.
63. Meng, L.-h. and X. Zheng, Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacologica Sinica, 2015. 36(10): p. 1163-1169.
64. Benjamin, D., et al., Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature reviews Drug discovery, 2011. 10(11): p. 868-880.
65. Laplante, M. and D.M. Sabatini, mTOR signaling in growth control and disease. cell, 2012. 149(2): p. 274-293.
66. Chan, S., Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. British journal of cancer, 2004. 91(8): p. 1420-1424.
67. Goodman, K.A. and C. Hajj, Role of radiation therapy in the management of pancreatic cancer. Journal of surgical oncology, 2013. 107(1): p. 86-96.
68. Haume, K., et al., Gold nanoparticles for cancer radiotherapy: a review. Cancer nanotechnology, 2016. 7(1): p. 1-20.
69. Gong, L., et al., Application of radiosensitizers in cancer radiotherapy. International Journal of Nanomedicine, 2021. 16: p. 1083.
70. Wang, H., et al., Cancer radiosensitizers. Trends in pharmacological sciences, 2018. 39(1): p. 24-48.
71. Song, G., et al., Emerging nanotechnology and advanced materials for cancer radiation therapy. Advanced materials, 2017. 29(32): p. 1700996.
72. Li, L., et al., Actively targeted deep tissue imaging and photothermal‐chemo therapy of breast cancer by antibody‐functionalized drug‐loaded X‐ray‐responsive bismuth sulfide@ mesoporous silica core–shell nanoparticles. Advanced functional materials, 2018. 28(5): p. 1704623.
73. Meng, H., et al., Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS nano, 2015. 9(4): p. 3540-3557.
74. 細胞存活率測試. Available from: https://www.acebiolab.com/TW/news/43.
75. Andreani, T., et al., Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. International journal of pharmaceutics, 2014. 473(1-2): p. 627-635.
76. de Oliveira Freitas, L.B., et al., Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous and Mesoporous Materials, 2017. 242: p. 271-283.
77. Suk, J.S., et al., PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 2016. 99: p. 28-51.
78. Wang, Y., et al., BSA‐mediated synthesis of bismuth sulfide nanotheranostic agents for tumor multimodal imaging and thermoradiotherapy. Advanced Functional Materials, 2016. 26(29): p. 5335-5344.
79. Wang, Y., et al., Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly (ethylene glycol). Nature communications, 2020. 11(1): p. 1-12.
80. Lv, S., et al., Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta biomaterialia, 2013. 9(12): p. 9330-9342.
81. Qi, J., et al., In vivo fate of lipid-based nanoparticles. Drug Discovery Today, 2017. 22(1): p. 166-172.