簡易檢索 / 詳目顯示

研究生: 高璿皓
論文名稱: 高電流密度氮化銦/氮化鋁電晶體
High Current Density InN/AlN MISHFETs
指導教授: 徐碩鴻
柳克強
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 56
中文關鍵詞: 氮化銦/氮化鋁電晶體
外文關鍵詞: InN/AlN MISHFETs
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文驗證了,氮化銦/氮化鋁 MIS異質介面電晶體,有明顯的電流調變和夾止電流效應。 此元件的高品質氮化銦(26 nm)/ 氮化鋁(100 nm)是使用電漿輔助分子磊晶技術而成,長在(111)的矽基板上。
    此元件在閘極長度為5-□m下,有著極高的電流密度,其電流密度可大於530 mA/mm。元件的夾止電壓的量測值在 –7伏左右,而此對應的汲極漏電流小於10 □A/mm。如此高濃度的電流密度極有可能是因為氮化銦和氮化鋁之間很大的自發性極化所造成如此高的片電流密度所致。
    以三族氮化合物來做作異質結構場效電晶體在高頻、高功率微波領域上一直是當今熱門的研究課題。異質結構場效電晶體大多以GaN和GaAs為主。而近幾年的研究中,氮化銦(InN)已廣泛地被注意到,且相當被看好。研究資料顯示當此材料作元件模擬中,其截止頻率可望達到THz,是未來極有可能發展成為操作在THz的元件[1]。但在目前的研究文獻中,僅僅侷限在理論推導,尚未有實際元件的完成及其量測結果。
    以材料特性來說,InN比起GaN及GaAs來說,具有更高的電子遷移率(Electron Saturation),漂移速度(Drift Velocity)、峰值電子漂移速度(Peak Overshoot Drift Velocity) [1]。其二維電子氣片電子濃度(Sheet Carrier Concentration)可達到1.01x1014 cm-2以上[2]。這較傳統AlGaN/GaN系列異質結構的二維電子氣濃度高出一個數量級,且也較一般傳統結構的AlGaAs/GaAs高兩個數量級。如此高的二維電子氣平板電子濃度使得InN系列的高速場效電晶體能夠在輸出大電流工作,並且使其有機會可操作在THz。接著電性與材料特性簡介分述如下。


    Abstract

    InN/AlN metal-insulator-semiconductor heterojunction field-effect transistors with a gate-modulated drain current and a clear pinch-off characteristic have been demonstrated. The devices were fabricated using high-quality InN (26 nm)/AlN (100 nm) epifilms grown by plasma-assisted molecular-beam epitaxy on Si (111) substrates. The devices exhibited a current density higher than ~530 mA/mm with a 5-□m gate length. The pinch-off voltage was at ~ –7 V with an associated drain leakage current less than 10 □A/mm. The observed high current density may be attributed to the high sheet carrier density due to the large spontaneous polarization difference between InN and AlN.

    目 錄 第一章 簡介 1 1.1 電性與材料特性比較 1 1.2 氮化銦磊晶方式 6 1.3 MOS異質結構場效電晶體操作原理及結構 7 1.4 元件上的應用 8 第二章 元件製程與量測方法 12 2.1 平臺隔離製作(mesa isolation) 14 2.2 歐姆接觸(ohmic contact) 18 2.3 閘極製作 20 2.4 InN/AlN異質結構場效電晶體元件製程步驟 21 2.5 元件完成圖 31 2.6 量測方法 33 第三章 量測結果 37 3.1 wafer 圖結構與表面量測圖 37 3.2 wafer 電性量測圖 38 3.3 氮化銦異質結構場效電晶體電性量測結果 39 第四章 結論 48 參考文獻 49 圖 目 錄 圖1-1. 氮化銦與其它材料的漂移速度對電場圖. 3 圖1-2. 移動率對成長厚度圖 3 圖1-3.. Momentum balance方式模擬元件fT圖 4 圖1-4 C-V profile of AlN/InN showing 2DEG in InN 5 圖1-5各材料的晶格常數與能帶圖 7 圖1-6 In content x對二維電子雲濃度模擬圖 9 圖1-7 InxGa1-xN/InN的參雜濃度與2DEG的模擬圖 10 圖1-8 InN厚度對片電流密度 10 圖2-1製程流程圖 12 圖2-2 曝光程序以及顯影流程圖 16 圖2-3 Stencil-layer示意圖 19 圖2-4 元件隔離蝕刻製程步驟 21 圖2-5 歐姆接觸製程步驟 23 圖2-6 蕭特基閘極製程步驟 25 圖2-7 電極製程步驟 27 圖2-7 為Field-Plated製程示步驟 29 圖2-8 元件空照圖 31 圖2-9 FAT FET空照圖 31 圖2-10 RF元件空照圖 32 圖2-11 RF-Field-Plated元件空照圖 33 圖2-12 TLM金屬接觸襯墊示意圖 34 圖2-13 總電阻與金屬襯墊間距關係圖 34

    參考文獻

    [1] B.E. Foutza, S. K. O’Learyb, M. S. Shur, L. F. Eastman, “Transient electron transport in wurtzite GaN, InN, and AlN, ” Journal of Applied Physics , vol.85,pp.7727-7734,June1999.
    [2] Y.C. Kong , Y.D. Zheng, C.H. Zhou, Y.Z. Deng, B. Shen, S.L.Gu, R. Zhang, P .Han, R.L. Jiang, Y. Shi ,“A novel InxGa1-xN/InN heterostructure field-effect transistor with extremely high two-dimensional electron-gas sheet density ,” Elsevier Solid-State Electronics ,vol.49,pp.199–203, Feb 2004.
    [3] W.J. Schaff, L. F. Eastman , “Surface charge accumulation of InN films grown by molecular-beam epitaxy, ”Applied Physics Letters, vol.82, pp. 1736-1738,March 2003.
    [4] H. Lu, W. J. Schaff, J. Hwang, L.F. Eastman, J.Schaff, “Preparation of InN and InN-Based Heterostructures by Molecular Beam Expitaxy ,”Materials Research Society,vol.680E,pp.E3.2.1-E3.2.5,2001.
    [5] D.Fritsch, H.Schmidt, M. Grundmann,“ Band dispersion relations of zinc-blende and wurtzite InN, ”Physical Reiview, B. 69, pp.165204 ,2004
    [6] M. T.Okamoto ,H Nakao, M. Harima ,“Optical band gap energy of wurtzite InN,” Applied Physics Letter, vol.81,pp1246–1248,August 2002.
    [7] T.L. Tansley, C.P. Foley, “Optical band gap of indium nitride,” Journal of Applied Physics,vol.59, pp. 3241–4198,May 1986.
    [8] A. G. Bhuiyan, A. Hashimoto, A. Yamamotoa,“ Indium nitride .InN.: A review on growth, characterization, and properties,” Journal of Applied Physics , vol.94, pp. 2789-2790 , September 2000.
    [9] W. Liu, Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs (John Wiley and Sons, New York, 1999.
    [10] C.K. Chao, H.S. Chang, T.M.Hsu, C.N. Hsiao, C.C. Kei, S.Y. Kuo ,“Optical properties of indium nitridenanorods prepared by chemical-beam epitaxy,” Nanotechnology Institute of Physics Publishing, vol.17, pp. 3930-932 , 2006.
    [11] L .Shen “Advanced Polarization-Based Design of AlGaN/GaN HEMTs” University of California Santa Barbara ,2002
    [12] J. W. Johnson, A. G. Baca, R. D. Briggs, R. J. Shul, J. R. Wendt, C. Monier, F. Ren, S. J. Pearton, A. M. Dabiran, A. M. Wowchack, C. J. Polley, and P. P. Chow, “Effect of gate length on DC performance of AlGaN/GaN HEMTs grown by MBE,” Solid-State Electronics, ,pp.1979-1985,vol. 45,October,2001
    [13] Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. DenBaars, U. K. Mishra, “Bias dependent microwave performance of AlGaN/GaN MODFET's up to100 V,”IEEE Electron Device Lett. Vol.18, pp.290-293, 1997.

    [14] X. Z. Dang, P, M. Asbeck, E.T. Yu, G. J. Sullivan, M. Y. Chen, B. T. McDermott, K. S. Boutros, and J. M. Redwing,“ Measurement of drift mobility in AlGaN/GaN heterostructure field-effect transistor,” Applied Physics Letter. vol .74, pp. 3890 – 3892 ,1999.
    [15] C.L. Wu, C.H. Shen, H.W. Lin, H.M. Lee, S. Gwo, “ Direct evidence of 8:9 commensurate heterojunction formed between InNand AlN on c plane,” Applied Physics Letter . vol 87, pp.241916, 2005
    [16] C.L. Wu, C.H. Shen, S. Gwo, “Valence band offset of wurtzite InN/AlN heterojunction determined by photoelectron spectroscopy ,” Applied Physics Letter. vol .88, pp.032105, 2006
    [17] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, S. S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Applied Physics Letter,vol. 71,pp.2794-2796 ,1997.
    [18] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap ,”Phys. Stat. Sol.B 229,R1 2002.
    [19] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Physical Review Letters, vol. 80 , pp.3967 ,2002.
    [20] A. Kasic, E. Valcheva, B Monemar, H. Lu, W. J. Schaff, “InN dielectric function from the midinfrared to the ultraviolet range, ’’Physical Review Letters ,B 70, pp.115217 ,2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE