簡易檢索 / 詳目顯示

研究生: 陳佑承
Chen, You-Cheng
論文名稱: 厚主動吸收層鉛鹵鈣鈦礦有機/無機混成太陽電池之製作
Fabrication of Lead Halide Perovskite Organic/Inorganic Hybrid Solar Cells with Thick Photoactive Layer
指導教授: 洪勝富
口試委員: 孟心飛
冉曉雯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 鉛鹵鈣鈦礦有機/無機混成太陽電池DMSO
外文關鍵詞: Organic/Inorganic hybrid solar cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種,低溫、全溶液製程、製程簡單、可大面積化之鉛鹵鈣鈦礦有機/無機混成太陽電池元件。其中本論文使用鉛鹵鈣鈦礦作為主動吸光層,藉由DMSO對於PbCl2的高溶解度特性,以提高precursor溶液之濃度,並建構有機/無機混成太陽電池元件。元件結構為ITO/PEDOT:PSS/Perovskite/PCBM/Al,屬於正式太陽電池結構,適當地選擇電洞和電子傳輸層,並透過旋轉塗佈最佳化陰乾條件,讓本論文之太陽電池元件表現更佳。本論文建構之太陽電池元件效率可達7.0 %,其短路電流18.1 mA/cm2有著優異的表現。本論文所提出之鉛鹵鈣鈦礦有機/無機混成太陽電池元件挾帶著良好的效率表現及其具有可大面積化之優勢,以利未來朝向大面積元件之製作發展。


    This paper proposed a low temperature, solution process, simple process, a large area of the lead halide perovskite organic/inorganic hybrid solar cell. In this paper, in which the use of lead halide perovskite as the photoactive layer. With the high solubility PbCl2 in DMSO to increase the concentration of the precursor solution, and construct organic / inorganic hybrid solar cell. Our device configuration:Glass/ITO/PEDOT:PSS/Perovskite/PCBM/Al belong to normal structure. Suitably selected the hole and the electron transport layer by spin coating and dried to optimize conditions for the performance of the solar cell of the present paper is better. In this paper, Construction of the solar cell efficiency of up to 7.0 %, short-circuit current of 18.1 mA/cm2 has excellent performance. Lead halide perovskite organic / inorganic hybrid solar cell laden with good efficiency and performance advantages of a large area can be to facilitate the production of large-area components toward future development.

    要................................................................................................................................ i Abstract .......................................................................................................................... ii 誌謝.............................................................................................................................. iii 目錄............................................................................................................................... iv 圖目錄........................................................................................................................... vi 表目錄........................................................................................................................ viii 第一章 緒論.................................................................................................................. 1 1.1 研究背景 ............................................................................................................. 1 1.1.1 前言.............................................................................................................. 1 1.1.2 太陽電池之發展.......................................................................................... 2 1.1.3 有機太陽電池之發展.................................................................................. 4 1.1.4 鉛鹵鈣鈦礦太陽電池之發展...................................................................... 7 1.2 研究動機 ............................................................................................................. 9 1.3 文獻回顧 ........................................................................................................... 10 1.4 論文架構 ........................................................................................................... 18 第二章 實驗原理........................................................................................................ 21 2.1 太陽電池基本簡介 ........................................................................................... 21 2.1.1 太陽電池基本操作原理............................................................................ 21 2.1.2 理想太陽電池等效膜型............................................................................ 22 2.1.3 實際太陽電池等效膜型............................................................................ 24 2.1.4 太陽電池基本參數.................................................................................... 27 2.1.5 太陽電池操作分析.................................................................................... 32 2.2 本論文研究理論 ............................................................................................... 37 2.2.1 主動吸光層材料........................................................................................ 37 2.2.2 電洞/電子傳輸層材料 .............................................................................. 41 2.2.3 陽/陰極材料 .............................................................................................. 43 2.3 元件結構與能帶圖 ........................................................................................... 44 第三章 實驗方法與流程............................................................................................ 45 3.1 有機/無機混成鈣鈦礦太陽電池元件製作流程 ............................................. 45 3.2 ITO玻璃基板設計及圖樣化 ........................................................................... 46 3.3 ITO玻璃基板準備與清洗 ............................................................................... 49 3.4 電洞傳輸層成膜 ............................................................................................... 50 3.5 主動吸光層成膜 ............................................................................................... 51 3.6 電子傳輸層成膜 ............................................................................................... 54 3.7 陰極金屬蒸鍍 ................................................................................................... 55 3.8 元件封裝 ........................................................................................................... 56 3.9 元件量測 ........................................................................................................... 56 第四章 實驗結果與討論.......................................................................................... 59 4.1 結構分析 ........................................................................................................... 59 4.2 主動吸光層溶劑分析 ....................................................................................... 61 4.3 高濃度主動吸光層元件製作 ........................................................................... 63 4.4 高濃度下成膜探討 ........................................................................................... 66 第五章 總結與未來展望............................................................................................ 69 參考文獻...................................................................................................................... 70

    [1] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., 25, 676 (1954).
    [2] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, “Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett., 73, 1991 (1998).
    [3] O. Schultz, S. W. Glunz and G. P. Willeke, “Multicrystalline silicon solar cells exceeding 20% efficiency,” Prog. Photovolt. : Res. Appl., 12, 553 (2004).
    [4] S. Benagli, D. Borrello, E. Vallat-Sauvain, J .Meier, U. Kroll, J .Hotzel, J .Spitznagel, J .Steinhauser, L .Castens and Y. Djeridane, “High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor,” 24th European Photovoltaic Solar Energy Conference, Hamburg, Sept. (2009).
    [5] News–“Tandem organic photovoltaic reaches 10.6% efficiency a world’s first for polymer organic photovoltaic devices” (2012).
    [6] K. M. Coakley,Wudl and M. D. McGehee, “Conjugated polymer photovoltaic cells,” Chem. Mater., 16, 4533 (2004).
    [7] H. Hoppe and N. S. Sariciftci, “Organic solar cell: An review,” J. Mater. Res., 19, (2004).
    [8] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” J. Am. Chem. Soc., 131, 6050–6051 (2009).
    [9] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, 3, 4088–4093 (2011).
    [10] J. H. Heo, S. H. Im, H. J. Kim, P. P. Boix, S. J. Lee, S. I. Seok, Iva?n M. S. and J. Bisquert, “Sb2S3-Sensitized Photoelectrochemical Cells: Open Circuit Voltage Enhancement through the Introduction of Poly-3-hexylthiophene Interlayer,” J. Phys. Chem. C, 116, 20717–20721 (2012).
    [11] P. Mauersberger and F. Huber, “Structure of caesium triiodostannate(II),” Acta Cryst., 36, 683–684 (1980).
    [12] K. Shum, Z. Chen, J. Qureshi, C. Yu, J. J. Wang, W. Pfenninger, N. Vockic, J. Midgley and J. T. Kenney, “Synthesis and characterization of CsSnI3 thin films,” Appl. Phys. Lett., 96, 221903 (2010).
    [13] D. B. Mitzi, K. Chondroudis and C. R. Kagan, “Design, Structure, and Optical Properties of Organic?Inorganic Perovskites Containing an Oligothiophene Chromophore,” Inorg. Chem., 38, 6246–6256 (1999).
    [14] A. Kojima1, M. Ikegami, K. Teshima and T. Miyasaka, “Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media,” Chem. Lett., 41, 397–399 (2012).
    [15] K. Tanakaa, T. Takahashia, T. Bana, T. Kondoa, K. Uchidab and N. Miurab, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3,” Solid State Communi., 127, 619–623 (2003).
    [16] T. Ishihara, “Optical properties of PbI-based perovskite structures,” J. Lumin., 60&61, 269–274 (1994).
    [17] Z. Chenga and J. Lin, “Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering,” CrystEngComm, 10, 2646–2662 (2010).
    [18] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nature Photonics, 7, 486–491 (2013).
    [19] J. M. Ball, M. M. Lee, A. Heya and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy Environ. Sci.,6, 1739–1743 (2013).
    [20] S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. W. Seo and S. I. Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor,” Energy Environ. Sci., (2014).
    [21] P. Docampo, J. M. Ball1, M. Darwich1, G. E. Eperon1 and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nature Communi., 4 (2013).
    [22] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sumbce and Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells,” Energy Environ. Sci., 7, 399–407 (2014).
    [23] J. You, Z. Hong, Y.(Michael) Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, “Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility,” ACS Nano, 8, 1674–1680 (2014).
    [24] G. E. Eperon1, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells,” Adv. Funct. Mater., 24, 151–157 (2014).
    [25] B. Conings, L. Baeten, C. D. Dobbelaere, J. D'Haen, J. Manca and H. G. Boyen, “Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach,” Adv. Mater., 26, 2041–2046 (2014).
    [26] Research Cell Efficiency Records (http://www.nrel.gov/ncpv/).
    [27] R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend and A. B. Holmes, “The photovoltaic response in poly(ppheny1ene vinylene) thin-film devices,” J. Phys. : Condens. Matter., 6, 1379 (1994).
    [28] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen and T. Fromherz, “The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403–404, 368–372 (2002).
    [29] H. Kim, S. H. Jin, H. Suh and K. Lee, “Origin of the open circuit voltage in conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, 5215, 111 (2004).
    [30] S. D. Stranks, G. E. Eperon1, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith1, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science, 342, 341–344 (2013).
    [31] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida and N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3,” Solid State Communi., 127, 619–623(2003).
    [32] P. P. Boix, K. Nonomura, N. Mathews and S. G. Mhaisalkar, “Current progress and future perspectives for organicinorganic perovskite solar cells,” Mater. Today, 17, 16–23 (2014).
    [33] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. S. Liu, G. Li and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” J. Am. Chem. Soc., 136, 622–625 (2014).
    [34] CONDUCTIVE POLYMERS DIVISION Clevios? P VP AI 4083 (http://goo.gl/IyAeUE).
    [35] Product Specification [6,6]-Phenyl C61 butyric acid methyl ester >99% (http://goo.gl/O5bLJy).
    [36] V. G. Pedro, E. J. J. Perez, W. S. Arsyad, E. M. Barea, F. F. Santiago, I. M. Sero and J. Bisquert, “General Working Principles of CH3NH3PbX3 Perovskite Solar Cells,” Nano Lett., 14, 888–893 (2014).
    [37] G. W. Warren and H. Henein, “Solubility of PbCl2 in DMSO and DMSO-water,” Hydrometallurgy, 46, 243–247 (1997).
    [38] A. Dualeh, N. Tetreault, T. Moehl, P. Gao, M. K. Nazeeruddin and M. Gratzel, “Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells,” Adv. Funct. Mater., 24, 3250–3258 (2014).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE