研究生: |
劉菊蓮 |
---|---|
論文名稱: |
直接接觸薄膜蒸餾法之熱質傳研究 Heat and Mass Transfer in Direct Contact Membrane Distillation |
指導教授: | 許文震 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 薄膜蒸餾 、溫度極化 、突出物 |
外文關鍵詞: | membrane distillation, temperature polarization, deflector |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
薄膜蒸餾技術目前尚未達到完全的商業化,主要問題在於溫度與濃度極化現象造成蒸發效率偏低,在流道內加上突出物,利用對流擾動可以增強熱流機制來破壞邊界層,藉此降低邊界層所產生的溫度和濃度極化現象,提高薄膜蒸餾模組之蒸發效率,來改善此技術上的缺點,本論文選用直接接觸薄膜蒸餾法,共設計七組流道進行進料端和滲透端兩端平均溫差為15.8℃、25.8℃、35.8℃的蒸餾量和壓降量測,除了一平滑流道外,還藉由改變突出物高度(0.8mm、0.4mm),突出物數量(20個、10個、5個),突出物設置位置(流道前半部、流到後半部)為操作參數的六組突出物流道,並透過選定的理論模式進行分析,提供本論文平滑流道實驗結果的比對與驗證;結果顯示理論蒸餾通量估算值在各操作溫差下均小於實驗值,又隨著溫差增大到35.8℃時,誤差範圍縮小至8.33%~47.03%,並顯示各突出物流道的蒸餾效果皆優於平滑流道,其中佈滿20個高0.8mm突出物的流道在溫差35.8℃且Re約500時,其蒸餾通量和平滑流道相比可獲得最大36.8%的增益量,而此擾流設計同時也造成3倍的壓力損失。
[1] B.R. Bodell, “Silicone rubber vapor diffusion in saline water distillation,” United States Patent no. 285,032, 1963.
[2] ME. Findley, “Vaporization through porous membranes,” I&EC Process Design and Development, Vol. 6, pp.226-230, 1967.
[3] M.S. El-Bourawi, Z. Ding, R. Ma and M. Khayet, “A framework for better understanding membrane distillation separation process,” Journal of Membrane Science, Vol. 285, pp.4–29, 2006.
[4] M. Qtaishat, T. Matsuura, B. Kruczeka and M. Khayet, “Heat and mass transfer analysis in direct contact membrane distillation,” Desalination, Vol.219, pp.272-292, 2008.
[5] 台灣海水淡化網
[6] 吳奇展,“薄膜蒸餾之海水淡化法之研究”,碩士論文,機械工程學系,國立成功大學,1998.
[7] http://www.acwasasakura.com/images/msf.gif
[8] http://www.norlandintl.com/multiple_effect_vapor_compression_distillation.asp
[9] http://ejournal.stpi.org.tw/NSC_INDEX/Journal/EJ0001/9709/9709-03.pdf
[10] http://www.ktf-split.hr/glossary/en_s.php?def=cathode
[11] R.W. Schofield, A.G. FANE and C.J.D. FELL, “Heat and mass transfer in membrane distillation,” Journal of Membrane Science, Vol.33, pp.299-313, 1987.
[12] M. Gryta, M. Tomaszewska and A.W. Morawski, “Membrane distillation with laminar flow,” Separation and Purification Technology, Vol.11, pp. 93-101, 1997.
[13] M. Gryta and M. Tomaszewska, “Heat transport in membrane distillation process,” Journal of Membrane Science, Vol.144, pp. 211–222, 1998.
[14] M.A. Izquierdo-Gil, M. C. García-Payo and C. Fernández-Pineda, “Air gap membrane distillation of sucrose aqueous solution,” Journal of Membrane Science, Vol.155, pp. 291–307, 1999.
[15] J. Phattaranawik and R. Jiraratananon, “Direct contact membrane distillation: effect of mass transfer on heat transfer,” Journal of Membrane Science, Vol.188, pp.137–143, 2001.
[16] K.W. Lawson and D.R. Lloyd, “Membrane distillation. II. Direct contact MD,” Journal of Membrane Science, Vol.120, pp.123–133 1996.
[17] J. Phattaranawik, R. Jiraratananon, A.G. Fane and C. Halim, “Mass flux enhancement using spacer-filled channels in direct contact membrane distillation,” Journal of Membrane Science, Vol.187, pp.193–201, 2001.
[18] L. Martinez and J.M. Rodriguez-Maroto, “Characterization of membrane distillation modules and analysis of mass flux enhancement by channel spacers,” Journal of Membrane Science, Vol. 274, pp.123-137, 2006.
[19] L. Martinez and J.M. Rodriguez-Maroto, “On transport resistances in direct contact membrane distillation,” Journal of Membrane Science, Vol.295, pp.28-39, 2007.
[20] Anil K. Pabby, Syed S.H. Rizvi and Ana Maria Sastre, “Handbook of Membrane Separations,” CRC-Press, 2008.
[21] 王啟川,“熱交換器設計”,五南出版社,2003.
[22] Yunus A. CENGEL, “Heat transfer,” McGraw-Hill, 1997.
[23] 蕭梓源,“燃料電池之氣體擴散層特性及透水分析”,碩士論文,機械工程學系,國立交通大學,2008.