研究生: |
林圓派 Lin, Yuan-Pai |
---|---|
論文名稱: |
混合超薄吸收層太陽能電池的模擬 Modeling and simulation on hybrid Extremely thin absorber solar cells |
指導教授: |
洪勝富
Horng, Sheng-Fu 孟心飛 Meng, Hsin-Fei 冉曉雯 Zen, Hsiao-Wen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 混合 、超薄吸收層 、太陽能電池 、模擬 |
外文關鍵詞: | hybrid, exetremely thin absorber, solar cell, modeling |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用指叉狀的結構來模擬超薄吸收層太陽能電池(hybrid extremely thin absorber solar cell) 我們的模型考慮了激子(exciton)的拆解率以及邊界的熱離子效應。針對不同的摻雜濃度模擬結果顯示: 高參雜濃度可以防止空乏區的合併,而且可以進一步降低中性區的串聯電阻,使得中性區的載子移動率不必很高就能達到很高的效率。 吸收層的厚度也是個重要的參數,理論上來說,吸收層的厚度最佳值大概就等於exciton有效的擴散的長度,我們的模擬結果也證實了這一點。吸收層內的載子遷移率也反映出了暗載子複合在超薄吸收層太陽能電池中的影響。最後,我們也探討了吸收層的能隙對元件整體效率的影響,在所有的參數都最佳化的情形之下,我們得到最高的能量轉換效率為19.4%。
We model the hybrid extremely thin absorber (ETA) solar cells based on a
finger-crossing structure. The exciton dissociation probability is considered in our
hybrid ETA solar cell model. Numerical simulation demonstrates that doping is necessary in hybrid ETA solar cells. To obtain higher power conversion efficiency, doping level should be high enough to prevent depletion regions from merging and to lower the series resistance in the neutral region. A high power conversion efficiency can be reached for moderate hole mobility (1e-5cm2/Vs) in p-type polymer if the doping level is high enough. And we optimize the absorber thickness. According to our simulation result, the optimal absorber thickness is around 16nm which is approximately equal to the exciton diffusion length. Power conversion efficiency up to 19.4% is reached with doping level 1e19 cm-3 and thickness 16nm.. The effect absorber carrier mobility and absorber bandgap is also demonstrated and discussed in our work.
1G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat.Mater. 4, 864 (2005)
2 L. Ma, C. Y. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617(2005).
3 M. Graetzel, Nature, 2001, 414, 338.
4 C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, Adv. Mater.17 1512(2005)
5 Yafit Itzhaik, Olivia Niitsoo, Miles Page and Gary Hodes, . Phys. Chem. C,113 4254(2009)
6 M. Krunks, A. Katerski, T. Dedova, I. Oja Acik, A. Mere, Sol. Energy Mater. Sol.Cells, 92,1016(2008)
7 M. Krunks, E.K¨arber, A.Katerski, K.Otto, I.OjaAcik, T.Dedova,A.Mere, Sol. Energy Mater. Sol.Cells, 94, 1191 (2010)
8 D. Kieven,T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner Appl. Phys. Lett. 92, 153107 (2008).
9 K. Taretto*,y and U. Rau., Prog. Photovolt: Res. Appl. 12:573(2004)
10 Wendy U. Huynh, Janke J. Dittmer, A. Paul Alivisatos* , Science 295. 2425(2002).
11 Abdelhak Belaidi, Thomas Dittrich *, David Kieven, Julian Tornow, Klaus Schwarzburg, Martha Lux-Steiner, phys. stat. sol. (RRL) 2, 172(2008).
12 Robinson J. Musembi, Marin Rusu, Julius M. Mwabora, Bernard O. Aduda, Konstantinos Fostiropoulos, Martha Ch. Lux-Steine, phys. stat. sol. (a) 205, 1713(2008).
13 Ying-Xuan Wang,Shin-Rong Tseng,Hsin-Fei Meng, Kuan-Chen Lee,Chiou-Hua Liu, and Sheng-Fu Horng Appl. Phys. Lett. 93, 133501 (2008).
14 Paul D. Cunningham and L. Michael Hayden, J. Phys. Chem. C , 112, 7928(2008).
15 A.J. Lewis a, A. Ruseckas a, O.P.M. Gaudin a, G.R. Webster b,P.L. Burn b, I.D.W. Samuel a, Organic Electronics 7, 452(2006).