簡易檢索 / 詳目顯示

研究生: 林志勇
Lin, Chih-Yung
論文名稱: 果蠅處理視覺訊號之原腦橋區域神經網路圖譜
A Comprehensive Wiring Diagram of the Protocerebral Bridge for Visual Information Processing in the Drosophila Brain
指導教授: 江安世
Chiang, Ann-shyn
口試委員: 江安世
施奇廷
謝昌煥
桑自剛
羅中泉
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 90
中文關鍵詞: 中央複合體原腦橋神經元
外文關鍵詞: central complex, protocerebral bridge
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腦如何理解接外部的感官訊息並進一步產生有意義行動關鍵是隱藏在腦中無數神經網路。原腦橋是昆蟲腦內中央複合體的主要組成部位之一,而中央複合體在解剖學與發育上則與人類的基底神經節可能系出同源。本研究先藉由逐一拆解數百個與原腦橋區域相關的單一神經元結構,再將其全部組合並置入於具有三維空間的中央複合體立體架構內,重構出以前腦橋區域為主體的完整神經網路圖譜,其中並載明 神經網路圖譜,其中並載明各神經元極性與訊息傳遞的可能路徑。藉由分析本研究 發現之一百九十四顆不同種類原腦橋神經元的結果,可進一步揭露出,中央複合體各不同組成部位間,其彼此訊息傳遞是由一個高度規律的處理系統負責。此系統包含多項不同的神經網路排列特性,諸如鏡像式、聚合發散散諸如鏡像式、 聚合式、 發散式、瓦蓋交疊式、回饋式以及平行放大等;同時本論文也深入探討這些特性在功能及演化上的重要性。藉此神經網路圖譜為藍本,研究者將可進一步探討果蠅大腦如何處理外部的感官訊號,例如視覺,以表達出適當的行為反應。


    How the brain perceives sensory information and generates meaningful behavior depends critically on its underlying circuitry. The protocerebral bridge (PB) is a major part of the insect central complex (CX), a pre-motor center may be analogous to the human basal ganglia. Here, by deconstructing hundreds of PB single neurons and reconstructing them into a common 3D framework, we have constructed a comprehensive map of PB circuits with labeled polarity and predicted directions of information flow. Our analysis reveals a highly-ordered information processing system that involves directed information flow among CX subunits through 194 distinct PB neuron types. Circuitry properties such as mirror, convergence, divergence, tiling, reverberation and parallel signal propagation were observed; their functional and evolutional significances were discussed. This layout of PB neuronal circuitry may provide guidelines for further investigations on transformation of sensory (e.g. visual) input into locomotion command in fly brains.

    Abstract 中文摘要 1.Introduction------4 2.Result------------6 3.Discussion-------18 4.Materials and Methods--26 5.Reference--------28 6.Figures and Figure Legends--32 7.Supplemental Information and Inventory--45 8.Supplemental Figures and Figure Legends--46 9.Supplemental Movies--86 10.Supplemental Tables--87 Acknowledgement----90

    Alivisatos, A.P., Chun, M., Church, G.M., Greenspan, R.J., Roukes, M.L., and Yuste, R. (2012). The brain activity map project and the challenge of functional connectomics. Neuron 74, 970-974.
    Aonuma, H., and Newland, P.L. (2002). Synaptic inputs onto spiking local interneurons in crayfish are depressed by nitric oxide. J. Neurobiol. 52, 144-155.
    Bargmann, C.I. (2006). Comparative chemosensation from receptors to ecology. Nature 444, 295-301.
    Bayraktar, O.A., Boone, J.Q., Drummond, M.L., and Doe, C.Q. (2010). Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Dev. 5, 26.
    Briggman, K.L., and Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Curr. Opin. Neurobiol. 16, 562-570.
    Chen, C.C., Wu, J.K., Lin, H.W., Pai, T.P., Fu, T.F., Wu, C.L., Tully, T., and Chiang, A.S. (2012). Visualizing Long-Term Memory Formation in Two Neurons of the Drosophila Brain. Science 335, 678-685.
    Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21, 1-11.
    Chiang, A.S., Liu, Y.C., Chiu, S.L., Hu, S.H., Huang, C.Y., and Hsieh, C.H. (2001). Three-dimensional mapping of brain neuropils in the cockroach, Diploptera punctata. J. Comp. Neurol. 440, 1-11.
    Daniels, R.W., Gelfand, M.V., Collins, C.A., and DiAntonio, A. (2008). Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J. Comp. Neurol. 508, 131-152
    de Velasco, B., Erclik, T., Shy, D., Sclafani, J., Lipshitz, H., McInnes, R., and Hartenstein, V. (2007). Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. Dev. Biol. 302, 309-323.
    Dun, S.L., Brailoiu, E., Wang, Y., Brailoiu, G.C., Liu-Chen, L.Y., Yang, J., Chang, J.K., and Dun, N.J. (2006). Insulin-like peptide 5: expression in the mouse brain and mobilization of calcium. Endocrinology 147, 3243-3248.
    Durstewitz, D., Seamans, J.K., and Sejnowski, T.J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J. Neurophysiol. 83, 1733-1750.
    Flames, N., Pla, R., Gelman, D.M., Rubenstein, J.L., Puelles, L., and Marin, O. (2007). Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J. Neurosci. 27, 9682-9695.
    Foley, N.C., Grossberg, S., and Mingolla, E. (2012). Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding. Cogn. Psychol. 65, 77-117.
    Foltenyi, K., Greenspan, R.J., and Newport, J.W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160-1167.
    Hanesch U, Fischbach K.-F., and Heisenberg M (1989). Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res. 257, 343-366.
    Heinze, S., and Homberg, U. (2007). Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315, 995-997.
    Heinze, S., and Homberg, U. (2008). Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons. J. Comp. Neurol. 511, 454-478.
    Heinze, S., and Homberg, U. (2009). Linking the input to the output: new sets of neurons complement the polarization vision network in the locust central complex. J. Neurosci. 29, 4911-4921.
    Heinze, S., and Reppert, S.M. (2011). Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69, 345-358.
    Heinze, S., and Reppert, S.M. (2012). Anatomical basis of sun compass navigation I: The general layout of the monarch butterfly brain. J. Comp. Neurol. 520, 1599-1628.
    Heinze, S., Gotthardt, S., and Homberg, U. (2009). Transformation of polarized light information in the central complex of the locust. J. Neurosci. 29, 11783-11793.
    Herman, J.P., Tasker, J.G., Ziegler, D.R., and Cullinan, W.E. (2002). Local circuit regulation of paraventricular nucleus stress integration: glutamate-GABA connections. Pharmacol. Biochem. Behav. 71, 457-468.
    Homberg, U. (2008). Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct. Dev. 37, 347-362.
    Homberg, U., Heinze, S., Pfeiffer, K., Kinoshita, M., and el Jundi, B. (2011). Central neural coding of sky polarization in insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 680-687.
    Izergina, N., Balmer, J., Bello, B., and Reichert, H. (2009). Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain. Neural Dev. 4, 44.
    Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo, L. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187-1203.
    Kong, E.C., Woo, K., Li, H.Y., Lebestky, T., Mayer, N., Sniffen, M.R., Heberlein, U., Bainton, R.J., Hirsh, J., and Wolf, F.W. (2010). A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila. PLoS One 5, e9954.
    Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461.
    Li, W., Pan, Y., Wang, Z., Gong, H., Gong, Z., and Liu, L. (2009). Morphological characterization of single fan-shaped body neurons in Drosophila melanogaster. Cell Tissue Res. 336, 509-519.
    Lin, H.H., Lai, J.S.Y., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory representation in the Drosophila mushroom body. Cell 128, 1205-1217.
    Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., and Liu, L. (2006). Distinct memory traces for two visual features in the Drosophila brain. Nature 439, 551-556.
    Liu, Q.L., Liu, S., Kodama, L., Driscoll, M.R., and Wu, M.N. (2012). Two Dopaminergic Neurons Signal to the Dorsal Fan-Shaped Body to Promote Wakefulness in Drosophila. Curr. Biol. 22, 2114-2123.
    Mao, Z.M., and Davis, R.L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front. Neural Circuits 3, 5.
    Muller, M., Homberg, U., and Kuhn, A. (1997). Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell Tissue Res. 288, 159-176.
    Nicolai, L.J.J., Ramaekers, A., Raemaekers, T., Drozdzecki, A., Mauss, A.S., Yan, J., Landgraf, M., Annaert, W., and Hassan, B.A. (2010). Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proceedings of the Proc. Natl. Acad. Sci. USA 107, 20553-20558.
    Olsen, S.R., and Wilson, R.I. (2008). Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci. 31, 512-520.
    Renn, S.C., Armstrong, J.D., Yang, M., Wang, Z., An, X., Kaiser, K., and Taghert, P.H. (1999). Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J. Neurosci. 41, 189-207.
    Robinson, I.M., Ranjan, R., and Schwarz, T.L. (2002). Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C(2)A domain. Nature 418, 336-340.
    Sakura, M., Lambrinos, D., and Labhart, T. (2008). Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. J. Neurophysiol. 99, 667-682.
    Sandeman, D. (1999). Homology and convergence in vertebrate and invertebrate nervous systems. Naturwissenschaften 86, 378-387.
    Seung, H.S. (2009). Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron 62, 17-29.
    Strausfeld, N.J., and Seyfarth, E.A. (2008). Johann Flogel (1834-1918) and the birth of comparative insect neuroanatomy and brain nomenclature. Arthropod Struct. Dev. 37, 434-441.
    Strauss, R. (2002). The central complex and the genetic dissection of locomotor behaviour. Curr. Opin. Neurobiol. 12, 633-638.
    Tessmar-Raible, K., Raible, F., Christodoulou, F., Guy, K., Rembold, M., Hausen, H., and Arendt, D. (2007). Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129, 1389-1400.
    Tomer, R., Denes, A.S., Tessmar-Raible, K., and Arendt, D. (2010). Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142, 800-809.
    Trager, U., Wagner, R., Bausenwein, B., and Homberg, U. (2008). A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain. J. Comp. Neurol. 506, 288-300.
    Triphan, T., Poeck, B., Neuser, K., and Strauss, R. (2010). Visual targeting of motor actions in climbing Drosophila. Curr. Biol. 20, 663-668.
    Urbach, R., and Technau, G.M. (2003). Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130, 3621-3637.
    van Swinderen, B., and Greenspan, R.J. (2003). Salience modulates 20-30 Hz brain activity in Drosophila. Nat. Neurosci. 6, 579-586.
    Vitzthum, H., Muller, M., and Homberg, U. (2002). Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J. Neurosci. 22, 1114-1125.
    Wang, J., Ma, X.J., Yang, J.S., Zheng, X.Y., Zugates, C.T., Lee, C.H.J., and Lee, T. (2004). Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43, 663-672.
    Wang, Z., Pan, Y., Li, W., Jiang, H., Chatzimanolis, L., Chang, J., Gong, Z., and Liu, L. (2008). Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem. 15, 133-142.
    Weir, P.T., and Dickinson, M.H. (2012). Flying Drosophila orient to sky polarization. Curr. Biol. 22, 21-27.
    Wernet, M.F., Velez, M.M., Clark, D.A., Baumann-Klausener, F., Brown, J.R., Klovstad, M., Labhart, T., and Clandinin, T.R. (2012). Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr. Biol. 22, 12-20.
    Wessnitzer, J., and Webb, B. (2006). Multimodal sensory integration in insects--towards insect brain control architectures. Bioinspir.Biomim. 1, 63-75.
    Wilson, R.I. (2011). Understanding the functional consequences of synaptic specialization: insight from the Drosophila antennal lobe. Curr. Opin. Neurobiol. 21, 254-260.
    Woods, D.F., and Bryant, P.J. (1991). The disks-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451-464.
    Young, J.M., and Armstrong, J.D. (2010a). Building the central complex in Drosophila: the generation and development of distinct neural subsets. J. Comp. Neurol. 518, 1525-1541.
    Young, J.M., and Armstrong, J.D. (2010b). Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J. Comp. Neurol. 518, 1500-1524.
    Yu, H.H., Chen, C.H., Shi, L., Huang, Y.L., and Lee, T.M. (2009). Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat. Neurosci. 12, 947-953.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE