研究生: |
林伯諭 Lin, Bo-Yu |
---|---|
論文名稱: |
研究利用HIV之穿膜胜肽TAT運送粒線體次單元NDUFS8進入粒線體並彌補粒線體第一蛋白複合體之缺陷 Studies on targeting NADH dehydrogenase (ubiquinone) Fe-S protein 8 to mitochondria by HIV-transactivator of transcription and rescuing mitochondrial complex I deficiency |
指導教授: |
高茂傑
Kao, Mou-Chieh |
口試委員: |
彭明德
Perng, Ming-Der 王志宏 Wang, Chih-Hong |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 粒線體 、第一蛋白複合體 、萊氏症候群 、穿膜胜肽 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類粒線體(mitochondria)第一蛋白複合體(complex I)次單元的缺陷會引發多種嚴重疾病,例如賴博氏遺傳性視覺神經症(Leber hereditary optic neuropathy)和萊氏症候群(Leigh syndrome)。由於目前的傳統療法對於大多數遺傳性粒線體疾病僅能達到緩和病情的效果,有鑑於此,發展更確實與便利的新療法是迫切需要的。
先前研究指出,將蛋白和HIV之穿膜胜肽TAT連接後之重組蛋白能夠不受細胞膜的限制進入細胞內,並保持原蛋白的生化活性。本研究旨在結合TAT與粒線體領導序列(leader sequence)之功能,期望此結合能夠成功將粒線體蛋白由細胞外運輸至粒線體內以彌補原先蛋白之缺陷。由於在人類粒線體第一蛋白複合體次單元的缺陷中,最早被發現與引發萊氏症候群有直接關係的是NADH dehydrogenase (ubiquinone) Fe-S protein 8 (NDUFS8),因此在本篇論文中,我們以NDUFS8為範例進行研究,目標是開發用於人類粒線體第一蛋白複合體缺陷的新治療方法。
目前在本論文的研究結果中顯示,不論將TAT放在NDUFS8的N或C端(TAT-NDUFS8 or NDUFS8-TAT)都能夠成功的將蛋白從細胞外運送到粒線體中,此外這兩種蛋白也都能夠被轉化成為成熟蛋白(mature protein)。研究中也發現TAT-NDUFS8和NDUFS8-TAT進入粒線體的方式不是經由已知的粒線體外膜轉移蛋白(translocase of the outer membrane)/粒線體內膜轉移蛋白(translocase of the inner membrane)所調控的途徑。另外,為了模擬NDUFS8蛋白缺陷以及加入TAT-NDUFS8後的回復狀況,我們利用本實驗室所建構之大量抑制NDUFS8表現量的細胞株(shRNA-C3)進行功能分析實驗。結果顯示加入TAT-NDUFS8後能夠完全回復shRNA-C3細胞株之人類粒線體第一蛋白複合體中NDUFS8的蛋白組成。此外,shRNA-C3細胞株在粒線體第一蛋白複合體活性和耗氧量實驗中分別提升30%和79%的功能活性。另一方面,我們發現TAT-NDUFS8進入細胞之後,能夠促使核內體(endosome)靠近粒線體並形成endosomes-mitochondria juxtaposition的現象,我們推測此現象是TAT-NDUFS8進入粒線體的途徑,此現象發生的同時,TAT-NDUFS8能夠從核內體被傳送到粒線體之中。
總結來說,在本論文研究中,我們提出了TAT-NDUFS8從細胞外到細胞內進入粒線體的可能途徑,此外,歸因於功能分析回復的實驗結果,本論文研究也能夠作為一個成功的範例以應用於未來粒線體疾病治療方法上。
Defects in subunits of mitochondrial complex I are associated with severe diseases, including Leber hereditary optic neuropathy and Leigh syndrome. However, to date, conventional treatment for the majority of genetic-based mitochondrial diseases can only be palliative. Therefore, developing a reliable and convenient treatment approach is in an urgent need.
Fusion of the protein transduction domain (PTD) of HIV-1 transactivator of transcription (TAT) with proteins has been demonstrated to bring proteins into cells by crossing plasma membranes while retaining the biological activity of proteins. In this study, we tried to apply the protein transduction concept of TAT with the mitochondrial-targeting capability of the specific leader sequence to generate a therapeutic protein delivery system which can specifically carry target proteins into mitochondria. Here, NADH dehydrogenase (ubiquinone) Fe-S protein 8 (NDUFS8), the first complex I subunit linked to Leigh syndrome, was used as the model subunit to test our specific aims, with a hope that this newly developed method could become a novel treatment for complex I deficiency.
Currently, our findings showed that both exogenously produced TAT-NDUFS8 and NDUFS8-TAT could be delivered into mitochondria and processed into the mature forms of NDUFS8. We also showed that the mechanism of TAT-NDUFS8 and NDUFS8-TAT entering mitochondria is not through the well-recognized translocase of the outer membrane (Tom) /translocase of the inner membrane (Tim) mitochondrial import pathway. Furthermore, in order to mimic the rescue of complex I deficiency, a NDUFS8 expression knockdown cell line (shRNA-C3) was used in functional analyses as the therapeutic model. Treating with TAT-NDUFS8 could completely restore the assembly of complex I in shRNA-C3 cells, and the respiratory rate of these NDUFS8 knockdown cells was also increased about 31% and 79% in the in-gel activity assay and oxygen consumption assay, respectively. Moreover, we demonstrated that when cells were cultured with TAT-NDUFS8, endosomes were found to be retrieved in close proximity to mitochondria, indicating that TAT-NDUFS8 may enter mitochondria via the endosomes-mitochondria juxtaposition.
In conclusion, our findings provide both the possible mechanism of TAT-NDUFS8 entering mitochondria and the model for therapeutic treatment of mitochondrial disorders.
1. McBride, H.M., M. Neuspiel, and S. Wasiak, Mitochondria: More than just a powerhouse. Current Biology, 2006. 16(14): p. R551-R560.
2. Schatz, G., The magic garden. Annual Review of Biochemistry, 2007. 76: p. 673-678.
3. Zimmer, C., ORIGINS On the Origin of Eukaryotes. Science, 2009. 325(5941): p. 666-668.
4. DiMauro, S., Mitochondrial DNA medicine. Bioscience Reports, 2007. 27(1-3): p. 5-9.
5. Enns, G.M., The contribution of mitochondria to common disorders. Molecular Genetics and Metabolism, 2003. 80(1-2): p. 11-26.
6. Smeitink, J., L. van den Heuvel, and S. DiMauro, The genetics and pathology of oxidative phosphorylation. Nature Reviews Genetics, 2001. 2(5): p. 342-352.
7. Chacinska, A., et al., Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell, 2009. 138(4): p. 628-644.
8. Brandt, U., Energy converting NADH : Quinone oxidoreductase (Complex I). Annual Review of Biochemistry, 2006. 75: p. 69-92.
9. Brand, M.D., et al., Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins. Free Radical Biology and Medicine, 2004. 37(6): p. 755-767.
10. Loeffen, J.L., et al., Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat, 2000. 15(2): p. 123-34.
11. Pitkanen, S., et al., NADH-coenzyme Q reductase (complex I) deficiency: heterogeneity in phenotype and biochemical findings. J Inherit Metab Dis, 1996. 19(5): p. 675-86.
12. Leigh, D., Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry, 1951. 14(3): p. 216-21.
13. Janssen, R.J., et al., Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis, 2006. 29(4): p. 499-515.
14. Greenamyre, J.T., et al., Complex I and Parkinson's disease. IUBMB Life, 2001. 52(3-5): p. 135-41.
15. Keeney, P.M., et al., Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci, 2006. 26(19): p. 5256-64.
16. Karry, R., E. Klein, and D. Ben Shachar, Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry, 2004. 55(7): p. 676-84.
17. Murray, J., et al., The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. J Biol Chem, 2003. 278(16): p. 13619-22.
18. Kim, S.H., et al., The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with Down syndrome and Alzheimer's disease. Life Sci, 2001. 68(24): p. 2741-50.
19. Munakata, K., et al., Mitochondrial DNA 3644T-->C mutation associated with bipolar disorder. Genomics, 2004. 84(6): p. 1041-50.
20. de Sury, R., et al., Genomic structure of the human NDUFS8 gene coding for the iron-sulfur TYKY subunit of the mitochondrial NADH : ubiquinone oxidoreductase. Gene, 1998. 215(1): p. 1-10.
21. Procaccio, V., et al., cDNA sequence and chromosomal localization of the NDUFS8 human gene coding for the 23 kDa subunit of the mitochondrial complex I. Biochimica Et Biophysica Acta-Gene Structure and Expression, 1997. 1351(1-2): p. 37-41.
22. Ohnishi, T., Iron-sulfur clusters/semiquinones in complex I. Biochim Biophys Acta, 1998. 1364(2): p. 186-206.
23. Leigh syndrome--Definition and Patient Education Available from: http://www.healthline.com/galecontent/leigh-syndrome#1.
24. Loeffen, J., et al., The first nuclear-encoded complex I mutation in a patient with leigh syndrome. American Journal of Human Genetics, 1998. 63(6): p. 1598-1608.
25. Ugalde, C., et al., Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Human Molecular Genetics, 2004. 13(6): p. 659-667.
26. Procaccio, V. and D.C. Wallace, Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations. Neurology, 2004. 62(10): p. 1899-1901.
27. Hinttala, R., et al., Sequence analysis of nuclear genes encoding functionally important complex I subunits in children with encephalomyopathy. Journal of Molecular Medicine-Jmm, 2005. 83(10): p. 786-794.
28. Sun, X.J., et al., Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. Journal of Psychiatry & Neuroscience, 2006. 31(3): p. 189-196.
29. Parikh, S., et al., A modern approach to the treatment of mitochondrial disease. Current Treatment Options in Neurology, 2009. 11(6): p. 414-430.
30. Koene, S. and J. Smeitink, Mitochondrial medicine: entering the era of treatment. Journal of Internal Medicine, 2009. 265(2): p. 193-209.
31. DiMauro, S., M. Hirano, and E.A. Schon, Approaches to the treatment of Mitochondrial Diseases - Invited review. Muscle & Nerve, 2006. 34(3): p. 265-283.
32. Banting, F.G., et al., Pancreatic extracts in the treatment of diabetes mellitus. Canadian Medical Association Journal, 1922. 7: p. 141-146.
33. Villa-Komaroff, L., et al., A bacterial clone synthesizing proinsulin. Proc Natl Acad Sci U S A, 1978. 75(8): p. 3727-31.
34. Leader, B., Q.J. Baca, and D.E. Golan, Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov, 2008. 7(1): p. 21-39.
35. Kerkis, A., et al., Properties of cell penetrating peptides (CPPs). IUBMB Life, 2006. 58(1): p. 7-13.
36. Brasseur, R. and G. Divita, Happy birthday cell penetrating peptides: already 20 years. Biochim Biophys Acta, 2010. 1798(12): p. 2177-81.
37. Hu, J.W., et al., Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides. Peptides, 2009. 30(9): p. 1669-78.
38. Frankel, A.D. and C.O. Pabo, Cellular Uptake of the Tat Protein from Human Immunodeficiency Virus. Cell, 1988. 55(6): p. 1189-1193.
39. Green, M. and P.M. Loewenstein, Autonomous Functional Domains of Chemically Synthesized Human Immunodeficiency Virus Tat Trans-Activator Protein. Cell, 1988. 55(6): p. 1179-1188.
40. Fawell, S., et al., Tat-Mediated Delivery of Heterologous Proteins into Cells. Proceedings of the National Academy of Sciences of the United States of America, 1994. 91(2): p. 664-668.
41. Vives, E., P. Brodin, and B. Lebleu, A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry, 1997. 272(25): p. 16010-16017.
42. Schwarze, S.R., et al., In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science, 1999. 285(5433): p. 1569-1572.
43. Brooks, H., B. Lebleu, and E. Vives, Tat peptide-mediated cellular delivery: back to basics. Advanced Drug Delivery Reviews, 2005. 57(4): p. 559-577.
44. Derossi, D., et al., The 3rd Helix of the Antennapedia Homeodomain Translocates through Biological-Membranes. Journal of Biological Chemistry, 1994. 269(14): p. 10444-10450.
45. Elliott, G. and P. OHare, Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 1997. 88(2): p. 223-233.
46. Futaki, S., et al., Arginine-rich peptides - An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. Journal of Biological Chemistry, 2001. 276(8): p. 5836-5840.
47. van den Berg, A. and S.F. Dowdy, Protein transduction domain delivery of therapeutic macromolecules. Current Opinion in Biotechnology, 2011. 22(6): p. 888-893.
48. Wender, P.A., et al., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(24): p. 13003-13008.
49. Rothbard, J.B., et al., Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. Journal of the American Chemical Society, 2004. 126(31): p. 9506-9507.
50. Gump, J.M., R.K. June, and S.F. Dowdy, Revised Role of Glycosaminoglycans in TAT Protein Transduction Domain-mediated Cellular Transduction. Journal of Biological Chemistry, 2010. 285(2): p. 1500-1507.
51. Zhang, X., et al., Endocytosis and membrane potential are required for HeLa cell uptake of R.I.-CKTat9, a retro-inverso Tat cell penetrating peptide. Mol Pharm, 2009. 6(3): p. 836-48.
52. Ferrari, A., et al., Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Molecular Therapy, 2003. 8(2): p. 284-294.
53. Swanson, J.A., Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol, 2008. 9(8): p. 639-49.
54. Nakase, I., et al., Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry, 2007. 46(2): p. 492-501.
55. Wadia, J.S., R.V. Stan, and S.F. Dowdy, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 2004. 10(3): p. 310-5.
56. Kaplan, I.M., J.S. Wadia, and S.F. Dowdy, Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release, 2005. 102(1): p. 247-53.
57. Palm-Apergi, C., P. Lonn, and S.F. Dowdy, Do cell-penetrating peptides actually "penetrate" cellular membranes? Mol Ther, 2012. 20(4): p. 695-7.
58. Ziegler, A., Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev, 2008. 60(4-5): p. 580-97.
59. Eiriksdottir, E., et al., Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates. Bioconjug Chem, 2010. 21(9): p. 1662-72.
60. Ter-Avetisyan, G., et al., Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem, 2009. 284(6): p. 3370-8.
61. Duchardt, F., et al., A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic, 2007. 8(7): p. 848-66.
62. Futaki, S., et al., Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans, 2007. 35(Pt 4): p. 784-7.
63. Hirose, H., et al., Transient Focal Membrane Deformation Induced by Arginine-rich Peptides Leads to Their Direct Penetration into Cells. Molecular Therapy, 2012. 20(5): p. 984-993.
64. Gump, J.M. and S.F. Dowdy, TAT transduction: the molecular mechanism and therapeutic prospects. Trends in Molecular Medicine, 2007. 13(10): p. 443-448.
65. Caron, N.J., S.P. Quenneville, and J.P. Tremblay, Endosome disruption enhances the functional nuclear delivery of Tat-fusion proteins. Biochem Biophys Res Commun, 2004. 319(1): p. 12-20.
66. Sloots, A. and W.S. Wels, Recombinant derivatives of the human high-mobility group protein HMGB2 mediate efficient nonviral gene delivery. FEBS J, 2005. 272(16): p. 4221-36.
67. Raagel, H., et al., CPP-protein constructs induce a population of non-acidic vesicles during trafficking through endo-lysosomal pathway. J Control Release, 2009. 139(2): p. 108-17.
68. Becker-Hapak, M., S.S. McAllister, and S.F. Dowdy, TAT-mediated protein transduction into mammalian cells. Methods, 2001. 24(3): p. 247-256.
69. Blobel, G. and B. Dobberstein, Transfer of Proteins across Membranes .1. Presence of Proteolytically Processed and Unprocessed Nascent Immunoglobulin Light-Chains on Membrane-Bound Ribosomes of Murine Myeloma. Journal of Cell Biology, 1975. 67(3): p. 835-851.
70. Deduve, C., From Cytases to Lysosomes. Fed Proc, 1964. 23: p. 1045-9.
71. Del Gaizo, V. and R.M. Payne, A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther, 2003. 7(6): p. 720-30.
72. Shokolenko, I.N., et al., TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair (Amst), 2005. 4(4): p. 511-8.
73. Ross, M.F., et al., Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers. Biochemical Journal, 2004. 383: p. 457-468.
74. Rayapureddi, J.P., et al., TAT Fusion Protein Transduction into Isolated Mitochondria Is Accelerated by Sodium Channel Inhibitors. Biochemistry, 2010. 49(44): p. 9470-9479.
75. Rapoport, M., et al., TAT-mediated delivery of LAD restores pyruvate dehydrogenase complex activity in the mitochondria of patients with LAD deficiency. Mol Ther, 2008. 16(4): p. 691-7.
76. Rapoport, M., et al., Successful TAT-mediated enzyme replacement therapy in a mouse model of mitochondrial E3 deficiency. J Mol Med (Berl), 2011. 89(2): p. 161-70.
77. Foltopoulou, P.F., et al., Intracellular delivery of full length recombinant human mitochondrial L-Sco2 protein into the mitochondria of permanent cell lines and SCO2 deficient patient's primary cells. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2010. 1802(6): p. 497-508.
78. Moreno-Lastres, D., et al., Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab, 2012. 15(3): p. 324-35.
79. Chang, J.-Y., The functional study of mitochondrial NADH dehydrogenase (ubiquinone) Fe-S protein 8 and characterization of its mitochondrial targeting sequence. National Tsing Hua University, 2010.
80. Calore, F., et al., Endosome-mitochondria juxtaposition during apoptosis induced by H. pylori VacA. Cell Death Differ, 2010. 17(11): p. 1707-16.
81. Vyas, P.M., et al., A TAT-frataxin fusion protein increases lifespan and cardiac function in a conditional Friedreich's ataxia mouse model. Hum Mol Genet, 2012. 21(6): p. 1230-47.
82. Schagger, H. and G. Vonjagow, Blue Native Electrophoresis for Isolation of Membrane-Protein Complexes in Enzymatically Active Form. Analytical Biochemistry, 1991. 199(2): p. 223-231.
83. Rassow, J., Helicobacter pylori vacuolating toxin A and apoptosis. Cell Communication and Signaling, 2011. 9.
84. Manders, E.M.M., F.J. Verbeek, and J.A. Aten, Measurement of Colocalization of Objects in Dual-Color Confocal Images. Journal of Microscopy-Oxford, 1993. 169: p. 375-382.
85. Del Gaizo, V., J.A. MacKenzie, and R.M. Payne, Targeting proteins to mitochondria using TAT. Molecular Genetics and Metabolism, 2003. 80(1-2): p. 170-180.
86. Rossignol, R., et al., Mitochondrial threshold effects. Biochemical Journal, 2003. 370: p. 751-762.
87. Hebert-Chatelain, E., et al., Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10. Biochimica Et Biophysica Acta-Bioenergetics, 2012. 1817(5): p. 718-725.
88. Ogura, M., et al., Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components. Biochemical Journal, 2012. 447: p. 281-289.
89. Bayer, N., et al., Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: Implications for viral uncoating and infection. Journal of Virology, 1998. 72(12): p. 9645-9655.
90. Vendeville, A., et al., HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Molecular Biology of the Cell, 2004. 15(5): p. 2347-2360.
91. El-Sayed, A., S. Futaki, and H. Harashima, Delivery of Macromolecules Using Arginine-Rich Cell-Penetrating Peptides: Ways to Overcome Endosomal Entrapment. Aaps Journal, 2009. 11(1): p. 13-22.
92. Yang, X.M. and R.E. MacKenzie, Expression of human NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase in Escherichia coli: purification and partial characterization. Protein Expr Purif, 1992. 3(3): p. 256-62.
93. Chen, S.W., C.C. Liu, and H.C. Yen, Detection of suppressed maturation of the human COQ5 protein in the mitochondria following mitochondrial uncoupling by an antibody recognizing both precursor and mature forms of COQ5. Mitochondrion, 2013. 13(2): p. 143-52.