研究生: |
廖時新 Liao, Shih-Hsin |
---|---|
論文名稱: |
CMOS電容式微麥克風之設計與製作 Design and Implementation of a CMOS Capacitive Micromachined Microphone |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
邱一
方維倫 盧向成 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | CMOS 、MEMS 、電容式 、凝縮式 、麥克風 |
外文關鍵詞: | CMOS, MEMS, capacitive, condenser, microphone |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計與製作出一個CMOS-MEMS電容式麥克風。此麥克風使用新穎的微結構設計,在低面積下具有高靈敏度。後製程簡單且可於低溫下完成。不需作額外的薄膜沉積,且容易與CMOS標準製程整合於單一晶片上。
於製程上使用TSMC 0.35-um 2P4M CMOS標準製程定義電路與微結構。在後製程進行濕蝕刻以釋放微結構,與等向性蝕刻passivation層打開I/O pads,即可完成此麥克風。
本晶片包含五組不同設計的麥克風,總晶片面積為2.46x2.46 mm2。單一組麥克風的工作電壓為3.3 V,電流消耗為1.04 mA,微結構面積為190x190 um2,總面積為0.95x0.8 mm2 (包含I/O pads)。在聲壓為1 Pa且頻率為1 kHz的量測環境下,此麥克風的靈敏度為-37.21 dBV/Pa,訊雜比為57 dB,等效輸入雜訊為3.16 uV/√Hz,關聯性(coherence)為0.98,感測頻寬為2.32 kHz。
This work describes the design and implementation of a CMOS-MEMS capacitive microphone. The microphone with a novel micro-structure design has a high sensitivity in a small area. The post-process is simple and can be completed at low temperatures. Without additional thin film deposition, it is easy to be integrated with the CMOS process on a single chip.
The sensor is fabricated by using TSMC 0.35-um 2P4M CMOS process. After metal wet etching to release the micro-structure, a dry etching is performed to remove passivation layers to open the I/O pads.
This chip contains five different sets of microphones, and the total chip size is 2.46x2.46 mm2. The power supply of each set is 3.3 V; the current consumption is 1.04 mA; the area of micro-structure is 190x190 um2; and the area of each set is 0.95x0.8 mm2 (including I/O pads). The sensitivity is -37.21 dBV/Pa measured at 1 Pa and 1 kHz; the signal-to-noise ratio is 57dB; the equivalent input noise is 3.16 uV/√Hz; the coherence is 0.98; and the sensor bandwidth is 2.32 kHz.
[1] Yole Developpement, “MEMS Microphone 2011 report,” 2011.
[2] M. Royer, J.O. Holmen, M.A. Wurm, OS. Aadland and M. Glenn, “ZnO on Si integrated acoustic sensor,” Sensors and Actuators, vol. 4, pp. 357-362, 1983.
[3] S. S. Lee, R. P. Ried, and R. M. White, “Piezoelectric cantilever microphone and microspeaker,” Journal of microelectromechanical systems, vol. 5, no. 4, pp. 238-242, 1996.
[4] L. T. Zhang, T. L. Ren, J. S. Liu, L. T. Liu and Z. J. Li, “Fabrication of a cantilever structure for piezoelectric Microphone, ” The Japan society of applied physics, vol. 41, no. 11b, pp. 7158-7159, Nov. 2002.
[5] J. Hillenbranda and G. M. Sesslerb, “High-sensitivity piezoelectric microphones based on stacked cellular polymer films (L),” Acoustical Society of America, DOI. 10.1121/1.1810272, pp. 3267-3270, 2004.
[6] R. Schellin and G. Hess, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges,” Sensors and Actuators A, vol. 32, pp. 555-559, 1992.
[7] E. Kalvesten, L. Lofdahl, G. Stemme, “Small piezoresistive silicon microphones specially designed for the characterization of turbulent gas-flows,” Sensors and Actuators A-Physical, vol. 46, pp. 151-155, Feb. 1995.
[8] G. Li, Y. Zohar and M. Wong, “Piezoresistive microphone with integrated amplifier realized using metal-induced laterally crystallized polycrystalline silicon,” Journal of Micromechanics and Microengineering, vol. 14, no. 10, pp. 1352-1358, Oct. 2004.
[9] M. Pedersen, W. Olthuis, and P. Bergveld, “High-performance condenser microphone with fully integrated CMOS amplifier and DC-DC voltage converter,” J. Microelectromech. Syst., vol. 7, no. 4, pp. 387–394, Dec. 1998.
[10] X. X. Li, R. Lin, H. Kek, J. Miao, Q. Zou, “Sensitivity-improved silicon condenser microphone with a novel single deeply corrugated diaphragm,” Sensors and Actuators A-Physical, vol. 92, pp. 257-262, Aug. 2001.
[11]J. Chen, L. T. Liu, Z. J. Li, Z. Tan, Y. Xu, J. Ma, “On the single-chip condenser miniature microphone using DRIE and backside etching techniques,” Sensors and Actuators A-Physical, vol. 103, pp. 42-47, Jan. 2003.
[12] J. Y. Chen, Y. C. Hsu, S. S. Lee, T. Mukherjee, and G. K. Fedder, “Modeling and simulation of a condenser microphone,” Sens. Actuators A, vol. 145–146, pp. 224–230, Jul. 2008.
[13]C. H. Huang, C. H. Lee, T.M. Hsieh, L. C. Tsao, S. Wu, J. C. Liou, M. Y. Wang, L. C. Chen, M. C. Yip, and W. L. Fang,“Implementation of the CMOS MEMS condenser microphone with corrugated metal diaphragm and silicon back-plate,” Sensors, vol. 11, pp. 6257-6269, Jun. 2011.
[14]M. L. Li, P. H. Wang, P. L. Liao, and M. S.-C. Lu, “Three dimensional photoacoustic imaging by a CMOS micromachined capacitive ultrasonic sensor,” IEEE Elec. Dev. Lett., vol. 32, no. 8, pp. 1149-1151, Aug. 2011.
[15]A. Sharma, M. F. Zaman, and F. Ayazi, “A 104-dB Dynamic Range Transimpedance-Based CMOS ASIC for Tuning Fork Microgyroscopes,” IEEE Journal of Solid-State Circuits, vol. 42, no. 8, Aug. 2007.
[16]C. T. Chiang, C. Y. Wu, “A CMOS digitized silicon condenser microphone for acoustic applications,” IEEE Sensors Journal, vol. 11, no. 2, Feb. 2011.
[17]S. Y. Peng, M. S. Qureshi, P. E. Hasler, et al.,“A charge-based low-power high-SNR capacitive sensing interface circuit,” IEEE Transactions on circuits and systems, vol. 55, no. 7, Aug. 2008.
[18]L. Picolli, M. Grassi, A. Fornasari, et al.,“A 1.0-mW, 71-dB SNDR, fourth-order Sigma Delta interface circuit for MEMS microphones,” Analog integrated circuits and signal processing, vol. 66, no. 2, Feb. 2011.
[19]M. W. Baker and R. Sarpeshkar, “A low-power high-PSRR currentmode microphone preamplifier,” IEEE J. Solid-State Circuits, vol. 38,no. 10, pp. 1671–1678, Oct. 2003.
[20]P.R. Scheeper, A.G.H. van der Donk, W. Olthuis and P. Bergveld, “Fabrication of silicon condenser microphones using single wafer technology,” IEEE J. Microelectromech. Syst., vol. 1, pp. 147-154, 1992.
[21]P.R. Scheeper, A.G.H. van der Donk, W. Olthuis and P. Bergveld, “A review of silicon microphones, ”Sens. Actuat. A, vol. 44, pp. 1-11, 1994.