簡易檢索 / 詳目顯示

研究生: 黃萌祺
Huang, Meng-Chi
論文名稱: 微結構於可撓式基材之製造
The Fabrication of Microstructures on Flexible Substrates
指導教授: 傅建中
Fu, Chien-Chung
口試委員: 陳政寰
周敏傑
丁嘉仁
陳秀香
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 113
中文關鍵詞: 可撓式基材抗反射膜片滾筒模具
外文關鍵詞: Flexible substrates, Anti-reflection thin-film, Roller mold
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可撓式基材具有輕、薄、可撓曲,且不受場合、空間限制的優點,因此經常被應用於輕薄或可動式機構設計的產品,如:無線智慧標籤(RFID)、可撓式電子書報、超薄平面顯示器等。其中以塑膠基板最常被使用,其優點為透明、高安全性、並適合Roll-to-Roll的高生產效率。但現今塑膠基板的模具製造或產品加工,仍存在許多問題,故本論文將針對這些問題提出解決方案,探討如下:
    研究一:在Roll-to-Roll製程中,滾筒模具大多由超精密加工進行車削,但許多特殊的圖案是無法藉由超精密加工製造。本研究藉由軟微影(soft -lithography)與電化學蝕刻方式,將平面微結構轉印至不鏽鋼滾筒模具上,並成功的製造出直徑1.5mm到38mm之滾筒模具,且滾筒上之圖形不受任何限制,亦可以用於人字型軸承製造。
    研究二:抗反射膜片可被應用於許多消費性電子產業,如:平面顯示器、照相機和太陽能電池。傳統上,使用多層膜法來製造抗反射膜片,但其有製程不穩定、且效果不佳等缺點。許多研究使用蛾眼奈米結構取代多層膜法當作抗反射膜片,但都只將蛾眼奈米結構製作於Si或氮化鎵晶圓上,在塑膠膜片上卻著墨不深。本研究藉由乾蝕刻方式蝕刻出奈米針尖陣列,再將其進行電鑄製程,最後利用熱壓PMMA而獲得抗反射膜片。與無結構PMMA比較,在可見光範圍中,抗反射率可從4.25﹪降至0.5﹪,亦遠優於3M公司所出產的抗反射膜片(1.1﹪)。
    研究三:隨著光學設計的日益嚴苛,光學膜片上之微結構也日益複雜,有許多微結構已經無法使用現行的黃光微影技術或超精密加工進行加工。故本研究以背面曝光法,藉由控制基板的種類與厚度,可製造出具有傾斜面之大面積3D微結構,且無需改變曝光設備;並可進一步製造出無需經熱處理(reflow)之微透鏡。
    研究四:隨著軟性顯示器的興起,於大面積軟性基材上進行微結構製程隨之重要,但傳統的黃光微影製程不易使用於大面積軟性基材上,故本研究藉由局部電化學沉積法,可定義圖案於陰極板中,再使用無電鍍沉積法增加微結構之厚度,於軟性基材上製造出微結構。且一次的黃光微影製程,可製造出超過50片相同微結構之陰極板,大幅減少黃光微影之需求。使用相同之方法,亦可將平面微結構轉印至滾筒模具上,製造Roll-to-Roll製程中之滾筒模具。
    藉由上述之研究,將可製作出不受任何圖形限制的滾筒模具,利用Roll-to-Roll製程可於軟性基材中製造大面積的微結構,以降低成本,並開發出符合經濟效益的消費性電子產品。此外,亦可製造高效率之奈米針尖抗反射膜片與大面積3D微結構光學元件,可應用於新世代可撓性平面顯示器產業。


    Flexible substrates are light, thin, and not restricted to the environments or spaces, and hence, are commonly applied to mobile devices, such as, RFIDs, electronic books, and ultra-thin displays. In particular, plastic substrates are most commonly used, because they are transparent, reliable, and suitable for Roll-to-Roll processes. However, there still remain several issues by using plastic substrates. This research will propose solutions to address these problems.
    Study 1:In Roll-to-Roll processes, roller molds are generally manufactured by ultra-precision machining, but this process is not able to produce many special patterns. This research applied both soft-lithography and electro-chemistry to reproduce two-dimensional patterns onto the stainless roller mold, and successfully fabricated a roller mold with diameter of 1.5mm – 38mm, and no restrictions on the patterns.
    Study 2:Anti-reflection thin-film can be applied to several consumer electronic devices, such as flat panel displays, cameras, and solar cells. Traditionally, it is fabricated by multi-thin film techniques, but the process is unstable and produces low quality thin-film. Many researchers have used nanostructures on silicon or gallium nitride as an alternative, but nanostructures on the plastic thin-film were barely reported. This research applied dry-etching technique to produce nanoscale arrays, and treated by electroforming and hot-pressing PMMA to produce anti-reflection thin-film. By comparing with unstructured PMMA, its anti-reflection rate was reduced from 4.25% to 0.5%, which was better than products of 3M (1.1%).
    Study 3:The micro-structures on the optical thin-film is becoming more complex than ever, and some structures were already not able to produce by current lithography or ultra-precision machining techniques. Therefore, this research applied the backside exposure technique to produce large-inclined area with three-dimensional micro-structures by controlling the thickness of the substrates. Furthermore, the fabrication processes did not require additional exposure equipment, and no further heat flow treatment was required.
    Study 4:The micro-structures on the large-area flexible substrates have become increasingly important, but it is difficult to produce structures on large-area flexible substrates by using lithography. Therefore, this research applied electrochemical deposition technique to define patterns on the electrodes, followed by electroless deposition technique to increase thickness and eventually produced micro-structures on flexible substrates. In addition, it was able to produce 50 pieces of electrodes with the same micro-structures in one lithography process. With the same method, it was also able to produce two-dimensional patterns on the roller mold for Roll-to-Roll equipment.
    In this thesis, it is able to produce any patterns on the roller mold, by using Roll-to-Roll process to produce large-area micro-structures on the flexible substrates. By reducing the cost, economical consumer electronic devices can be developed. Moreover, high-efficiency nanoscale anti-reflection thin-film and large-area 3D micro-structures optical components can be applied to flexible displays industry.

    Table of Contents Chapter 1 Introduction………………………………………………………………1 1-1 Introduction of MEMS……………………………….............………………1 1-2 Methods for fabrications of microstructures on flexible substrate……..……3 1-2-1 Roll to roll process………….………………………………...………6 1-2-2 Nanoimprint lithography………………………….………..………...8 1-2-3 Special 3D microstructures………………..………………….....…..11 1-2-4 Patterns of the large area microfabrication…………………….…....13 Chapter 2 Fabrication of Steel Roller Imprinting Molds through Adapting Conventional Planar Micro Fabrication Tools……………..…………16 2-1 Fabrication Process………………………………...……………………….18 2-1-1 Silicon Mold…………………………………………………..…….19 2-1-2 Molding the PMDS Stamp……………………………………….….20 2-1-3 Preparation of the cylinder…………………………………………..21 2-1-4 Pattern Transfer…………………………………………….....……..22 2-1-5 Etching of the Cylinder…………………………………….....……..23 2-2 Fabrication Equipment…………………..……………………………….…24 2-2-1 Resist Coating of Cylinder………………………………….....…....25 2-2-2 Sputter Coating…………………..……………………………….…25 2-2-3 RIE of Photoresist………………………………………….......…....26 2-2-4 Soft Lithography Rolling………………………………….......….....26 2-3 Results…………………..…………………………..………………………27 2-4 Summary…………………………………………………………..………..30 Chapter 3 Low Cost Fabrication of the Large-Area Anti-Reflection Films from Polymer by Nanoimprint/Hot embossing Technology………..…….. .39 3-1 The Process………………..………………………………………………..42 3-2 Experimental Results and Discussions………………..……………………44 3-3 Summary…………………………………………………………..………..46 Chapter 4 A Novel Method of Fabrication Anti-Reflection Films by ICP-RIE. .57 4-1 The Process………………..………………………………………………..59 4-2 Experimental Results and Discussions………………..……………………60 4-3 Summary…………………………………………………………..………..63 Chapter 5 Fabrication of 3D microstructures and microlens array by one step UV lithography…………………..……………………………………...68 5-1 The Process…………………..……………………………………………..68 5-2 Experimental Results and Discussions…………………..…………………69 5-3 Summary…………………………………………………………..………..71 Chapter 6 3-D Patterns of the Large Area Microfabrication by Localized Electrochemical Deposition and Electrolessb Plating Plating……..…78 6-1 The Process………………..…………………………………………….….78 6-2 Experimental Results and Discussions…………………………………..…80 6-3 Summary…………………………………………………………..………..83 Chapter 7 Conclusion…………………………………………………………….…92 Reference…………………………………………...…….………………………… 95 Publications by far……………………………………………………………….. 101 Figure Caption Fig 1. The proposed fabrication processes of the microstructures………….………..31 Fig 2. The cylinder is held coaxial to the adapter with a symmetric, tapered claw which is tightened by a screw cap…..……………………………..…………..32 Fig 3. The adapter for horizontal rotation of multiple cylindrical substrates during sputter coating of gold. …………………………………………,….…………33 Fig 4. Rotational drive for the cylindrical substrate for RIE pattern transfer to the photoresist layer.………………………………………………,………….…..34 Fig 5. Apparatus for the soft lithography transfer of the SAM layer from the PDMS stamp to the gold surface of the cylindrical substrate.……,,,…………………35 Fig 6. SEM images of the herring bone journal bearing fabrication process.……..…36 Fig 7. Detailed photomicrograph of the final HBJB stitched pattern…...…………... 37 Fig 8. Smaller features can be transferred to a stainless steel cylinder.……………...38 Fig 9. ECR plasma process fabricated the SWSs with large area directly on silicon substrates……………………………………………………………………..48 Fig 10. SEM images of nano-tip arrays on silicon substrate with different heights…49 Fig 11. SEM image of Ni-Co mold after electroforming process (top view) ……….50 Fig 12. SEM images of PMMA films with SWSs after the hot embossing process at different molding temperatures………………………………………………51 Fig 13. The reflectivity measured as a function of the wavelengths on SWSs Si surface with different heights...........................................................................52 Fig 14. The reflectivity of 2 mm-thick PMMA sheets with/without SWS fabricated with different molding temperatures from 110 to 160 ℃................................53 Fig 15. The reflectivity of the fabricated PMMA sheet measured as a function of the incident angles at the wavelength of 550 nm.................................................. 54 Fig 16. The comparison between a bare PMMA sheet and the PMMA sheet with SWSs used as the cover of a bulletin window.……………………….………55 Fig 17. The fabrication processes of the SWSs by ICP-RIE…………………………64 Fig 18. The SEM show the fabricated SWS structure in the difference etching time..65 Fig 19. The SEM showed the Ni-Co mold and antireflection structure on PMMA substrate……………………………………...……………………………….66 Fig. 20 The reflectivity was measured as a function of the wavelength on the Si and PMMA structure. ………………………………...…….…………………….67 Fig 21. In the front exposure method, the inclined angles of the 3D microstructures could be controlled by using difference thickness of the transparent layer.....73 Fig 22. In the backside exposure method, the 3D microstructures with inclined angles could be controlled by using difference thickness of the transparent layer.....74 Fig 23. We could control the surface profile by using the different thickness of PMMA………………..…………………………………………..…………75 Fig 24. The surface profile of the microlens was controlled by backside exposure method and using PMMA matrix as the transparent layer………………….. 76 Fig 25. The microlens array was fabricated by backside exposure method and using 3 mm PMMA matrix as the transparent layer……………..…………………...77 Fig 26. Schematic diagram of the fabrication process..………………………..…….84 Fig 27. Schematic diagram of the experimental equipment for localized electrochemical deposition consisting of the anode, cathode and spacer.…....85 Fig 28. The anode plate with patterns was transferred to the cathode plate………….86 Fig 29. The thickness of the cathode patterns was measured after localized electrochemical deposition processes………………………………………...87 Fig 30. The thickness of the patterns on cathode plate was increased by electroless nickel technology…………………………………………………………….88 Fig 31. Comparisons of the width of the patterns after different processes………….89 Fig 32. The patterns were transferred to flexible substrate…………………………..90 List of Tables Table 1. Comparisons of the geometries of the SWSs after different processes..…56 Table 2. Comparisons of the width of the patterns after different processes...………91

    Reference

    [1] Xia Y., Qin D., and Whitesides G. M. 1996 Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometel-sized features. Adv Mater 8(12) 1015–1017.
    [2] Xia Y., and Whitesides G. M. 1998 Replica molding with a polysiloxane mold provides this patterned microstructure. Angew Chem Int Ed 37 550–575.
    [3] Jackman R. J., Brittain R. J., Adams S. T., Prentiss M. G., and Whitsides G. M. 1998 Design and fabrication of topologically complex three-dimensional microstructures. Science 280 2089–2091.
    [4] Kanamori Y., Sasaki M., and Hane K. 1999 Broadband antireflection gratings fabricated upon silicon substrates Opt. Lett. 24 1422-1424.
    [5] Kanamori Y., Hane K., Sai H., and Yugami H. 2001 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask App. Phy. Lett. 78 142-143.
    [6] Hadob´as K., Kirsch S., Carl A., Acet M., and Wassermann E. F. 2000 Reflection properties of nanostructure-arrayed silicon surfaces Nanotechnology 11 161-164.
    [7] Yu Z., Gao H., Wu W., Ge H., and Chou Y. 2003 Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff J. Vac. Sci. Technol. B 6 2874-2877.
    [8] Lo H. C., Das D., Hwang J. S., and Chen K. H. 2003 SiC-capped nanotip arrays for field emission with ultralow turn-on field Appl. Phys. Lett. 18 1420-1422.
    [9] Philippe L., and Michael G. M. 1997 Antireflection behavior of silicon subwavelength periodic structures for visible light Nanotechnology 8 53–56.
    [10] Lin G., Lin C., Kao H., Lin H., and Kao C. 2007 Anomalous microphotoluminescence of high-aspect-ratio Si nanopillars formatted by dry-etching Si substrate with self-aggregated Ni nanodot mask Appl. Phys. Lett.
    90 (14) 143102-1-143102-4.
    [11] Han M. H., Lee W. S., Lee S. K., and Lee S. S. 2002 Fabrication of 3D Microstructures with Single UV Lithography Step JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE 2(4) 268-272.
    [12] Totsu K., Fujishiro K., Tanaka S., and Esashi M. 2006 Fabrication of three-dimensional microstructure using maskless gray-scale lithography Sensors and Actuators A 130–131 387-392.
    [13] Tsai H. C., Chang Y. R., Chen H. K., and Shing T. K. 2006 Novel Photolithography to Perform the Oblique Microstructure MEMS 22-26 350-353.
    [14] Hirai Y., Inamoto Y., Sugano K., Tsuchiya T., and Tabata O. 2007 Moving mask UV lithography for three-dimensional structuring J. Micromech. Microeng. 17 199-206.
    [15] Huang S. H., and Tseng F. G. 2005 Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing J. Micromech. Microeng. 15 2235-2242.
    [16] Huang H., and Fu C. 2007 Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations J. Micromech. Microeng. 17 393-402.
    [17] Huang H., Yang W., Wang T., Chuang T., and Fu C. 2007 3D high aspect ratio micro structures fabricated by one step UV lithography J. Micromech. Microeng. 17 291-296.
    [18] Bard A. J., Fan EE-R., Kwak J., and Lev O. 1989 Scanning electrochemical microscopy introduction and principles Anal Chem 61 132–138.
    [19] Bard A. J., Fan F.-R. E, and Mirkin M. V. 1994 Electroanalytical chemistry: a series of advances 18, Marcel Dekker, New York.
    [20] Madden J. D., and Hunter I. W. 1995 Fabrication by electrodeposition building 3D structures and polymer actuators. Sixth International Symposium on Micro Machine and Human Science IEEE 77–81
    [21] Giar E. M., Said R. A., Bridges G. E., and Thomson D. J. 2000 Localized Electrochemical Deposition of Copper Microstructures Journal of The Electrochemical Society 147 (2) 586-591.
    [22] Yeo S. H., and Choo J. H. 2001 Effects of rotor electrode in the fabrication of high aspect ratio microstructures by localized electrochemical deposition J Micromech Microeng 11 435–442.
    [23] Yeo S. H., Choo J. H., and Sim K. H. 2002 On the effects of ultrasonic vibrations on localized electrochemical deposition. J Micromech Microeng 12 271–279
    [24] The introduction of electroless nickel, from http://www.freepatentsonline.com/5212138.html
    [25] Jiang L. T., Huang T. C., Chang C. Y., Ciou C. R., Yang S. Y., and Huang P. H. 2008 Direct fabrication of rigid microstructures on a metallic roller using a dry film resist J. Micromech. Microeng. 18(1) 501-506.
    [26] Jackman R. J., Wilbur J., and Whitesides G. 1995 Fabrication of submicrometer features on curved substrates by microcontact printing Science 269(4) 664–666.
    [27] Perennes F., Marmiroli B., Matteucci M., Tormen M., Vaccari L., and Fabrizio D. E. 2006 Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol J Micromech Microeng 16 473–479
    [28] Quake S. R., and Sherer A. 2000 From Micro- to nanofabrication with soft materials Science 290 1536–1540.
    [29] Xia Y., and Whitesides G. M. 1998 Soft lithography Annu Rev Mat Sci
    28 153–184.
    [30] Jiang L., Huang T., Chang C., Ciou J., Yang S., and Huang P. 2008 Direct fabrication of rigid microstructures on a metallic roller using a dry film resist J Micromech Microeng 18 1–6.
    [31] Jang G. H., and Yoon J. W. 2002 Dynamic characteristics of a coupled journal and thrust hydrodynamic bearing in a HDD spindle system due to its groove location Microsyst Technol 8 261–270.
    [32] Zhang Q. D., Winoto S. H., Chen S. X., and Yang J. P. 2002 A bi-directional rotating fluid bearing system Microsyst Technol 8 271–277.
    [33] Junmei W., Lee T. S., Shu C., and Jiankang W. 2002 A numerical study of cavitation foot-prints in liquid-lubricated asymmetrical herringbone grooved journal bearings Int J Numer Methods Heat Fluid Flow 12(5) 518–540.
    [34] Matsuoka K., Obata S., Kita H., and Toujou F. 2001 Development of FDB spindle motors for HDD use IEEE Trans Magn 37(2) 783–788.
    [35] Asada T., Saitou H., Asaida Y., and Itoh K. 2001 Characteristic analysis of hydrodynamic bearings for HDDs IEEE Trans Magn 37(2) 810–814.
    [36] Anders J., Greger T., and Stefan J. 2000 High Resolution 3D Microstructures Made by Localized Electrodeposition of Nickel Journal of The Electrochemical Society 147 (5) 1810-1817.
    [37] Madden J. D., and Hunter I. W. 1996 Three-Dimensional Microfabrication by Localized Electrochemical Deposition. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS 5 (1) 24-32.
    [38] P´erenn`es F., Marmiroli B., Matteucci1 M., Tormen M., Vaccari1 L., and Fabrizio E. D. 2006 Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol J. Micromech. Microeng. 16 473-479.
    [39] Crittenden S., Reifenberger R., Hillebrecht J., Birge R., Inerowicz D., and Regnier F. 2005 Soft lithography based micron-scale electrophoretic patterning of purple membrane J. Micromech. Microeng. 15 1494-1497.
    [40] Jang G. H., and Yoon J. W. 2002 Dynamic characteristics of a coupled journal and thrust hydrodynamic bearing in a HDD spindle system due to its groove location Microsystem Technologies 8 261-270.
    [41] Agarwala R. C., and Agarwala V. 2003 Electroless alloy/composite coatings: a review Sadhana 28 475–493.
    [42] Cohen A., Zhang G., Tseng F. G., Frodis U., Mansfeld F., and Will P. 1999 EFAB: low-cost automated electrochemical batch fabrication of arbitrary 3D microstructures. SPIE 3874 236–247
    [43] Wang T. C., Chen B., Rubner M. F., and Cohen R. E. 2001 Selective electroless nickel plating on polyelectrolyte multilayer platforms. Langmuir 17 6610–6615.
    [44] Benedetto F. D., Biasco A., Pisignano D., and Cingolani R. 2005 Patterning polyacrylamide hydrogels by soft lithography Nanotechnology 16 165–170.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE