簡易檢索 / 詳目顯示

研究生: 陳宛秀
Chen, Helen W
論文名稱: 以花青素敏化太陽能電池模擬 彩色視覺的光接受器
Mimicking color vision using photoreceptors constructed with anthocyanin-based dye-sensitized solar cells
指導教授: 徐邦達
Hsu, Ban-Dar
口試委員: 焦傳金
Chiao Chuan-Chin
林立元
Lin Lih-Yuan
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 72
中文關鍵詞: 光接受器染敏太陽能電池彩色視覺
外文關鍵詞: color vision, photoreceptor, DSSC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模仿人類視覺如何以三種錐形光接受器 (photoreceptor) 來判斷光顏色的構造﹐這個研究主題用了三個分別對短﹐中以及長波長光敏感的染敏太陽能電池 (DSSC) 建立了一個能以量子效率(Quantum Efficiency﹐QE) 來判別入射光顏色的色彩感測系統。每一種不同的染料都可以給予一個DSSC不同的光吸收特性﹐而紫包心菜粹取的花青素染料無毒﹐環保﹐容易取得 而且最重要的是會吸收可見光的波長﹐而且其吸光特性可簡單的由pH調控制﹐因此它成為用來初步測試這個構想的首選。量子效率資料經過了以解釋動物視覺原理的trichromacy theory以及opponent-process color theory為啟發的分析方式處理後﹐可藉由比較三個DSSC的量子效率光譜之比例﹐總和以及差異來達到顏色的判別。跟動物視覺相似的是﹐以opponent-process color為靈感的分析方法得到的是更精確和更可信的結果。模仿trichromacy theory的以QE比例為主的資料處理得到的結果則在多個波長範圍內無法提供可信的結果。目前在使用此系統時﹐所有的光源必須有同樣的光度才能正確判別顏色。若需要識別在不同光度的顏色﹐量子效率值可以用它和光度之間的線性關係調整﹐總之,透過模仿動物視覺理論的要點﹐這個系統證明了它在均勻光度下識別顏色的能力﹐且目前有多種可以用來客製化染料的策略﹐可以運用在創造更多有獨特光吸收特性的DSSC﹐提供未來的學者更多選擇的可能性。


    A system consisting of three dye-sensitized solar cells (DSSCs), each tailored with a light absorption maximum in short, medium or long wavelengths was developed for color sensing purposes using anthocyanins from red cabbages. Anthocyanins absorb light in the UV-Vis region and have pH-dependant light absorptivity profiles that were easily adjusted to suit this purpose. The system is constructed with inspiration from the three specialized photoreceptors in the human visual system, and quantum efficiency (QE) values of the system are analyzed in ways that mimic the data-processing methods of human vision, which are explained by both the trichromatic and opponent-process color theory. A successful method of using the quantum efficiency (QE) of the tri-DSSC system to interpret the color of the incident light (wavelength) was thus proposed. When six monochromatic incident light sources were used to characterize the response of the tri-DSSC system, the opponent color theory-based analysis method, which compares the sum and differences of the tri-DSSC QE values, returned more accurate color results by providing highly distinguishable values for each wavelength while the method of using QE ratio comparison alone returned more ambiguous results in multiple wavelength ranges. To use the tri-DSSC system to identify colors at different irradiances, corrections must be made to QE values assuming a linear relationship between QE and irradiance, or new QE values need to be measured directly. In conclusion, the tri-DSSC system has proven its potential in recognizing colors at a uniform incident irradiance level and the possibility to improve its color sensing functions are promising as multiple strategies to improve its future designs are available.

    Table of Contents Acknowledgements i Abstract ii Table of Contents iv 1.Introduction 6 1.1 Background 6 1.2 Operating Mechanism 6 1.3 System thermodynamics and kinetics 8 1.4 Dynamics between the sensitizing dye and DSSC 9 1.5 Light absorptivity profile and the sensitizing dye 10 1.6 Red cabbage anthocyanins 10 1.7 Conceptualizing a DSSC-based color sensing system 11 1.8 The human visual system and the tri-DSSC system 12 1.9 Experimental Plan 12 2. Materials and Methods 14 2.1 Materials 14 2.2 Anthocyanin extraction 14 2.3 Concentration measurement 14 2.4 Preparation of anthocyanin dyes with different light absorptivity profiles 15 2.5 Assembly of DSSC 15 2.6 Characterization of Light Sources 16 2.7 Characterization of DSSC 16 3. Results 18 3.1 Characterizing the external light sources 18 3.2 Characterizing sensitizing dye 18 3.3Characterizing the DSSC 19 3.4 Color sensing and QE analyses 20 3.5 Characterizing the tri-DSSC color sensor 21 4. Discussion 27 4.1 Goal Review 27 4.2 Dye performance and selection 27 4.3 QE analyses and data processing of the human visual system 33 4.4 QE dependence on irradiance 35 4.5 Practicality 36 4.6 Method of system validation 39 5. Conclusion 40 6. References 41 Tables and Figures 45 Appendix 68

    References
    [1] Gratzel, M. J. Photochem. Photobiol. C 2003, 4, 145–153.
    [2] Gratzel, M. Chem. Lett. 2005, 34, 8–13
    [3] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater. 2005, 4, 455–459.
    [4] O’Regan, B.; Gratzel, M. Nature 1991, 353, 737–740.
    [5] G.K. Boschloo, A. Goossens, J. Phys. Chem. 1996, 100, 19489–19494.
    [6] Dai, Q.; Rabani, J. Journal of Photochemistry and Photobiology a-Chemistry 2002,
    148, 17.
    [7] F.G. Gao, A.J. Bard, L.D. Kispert, J. Photochem. Photobiol. A, 2000,130, 49–56.
    [8] N.J. Cherepy, G.P. Smestad, M. Gr.atzel, J.Z. Zhang, J. Phys. Chem. B, 1997, 101, 9342–9351.
    [9] Goncalves, L. M.; Bermudez, V. D.; Ribeiro, H. A.; Mendes, A. M. Energy & Environmental Science 2008, 1, 655.
    [10] Chang, H.; Kao, M. J.; Chen, T. L.; Chen, C. H.; Cho, K. C.; Lai, X. R. International Journal of Photoenergy 2013.
    [11] Zhou, H. Z.; Wu, L. Q.; Gao, Y. R.; Ma, T. L. Journal of Photochemistry and Photobiology a-Chemistry 2011, 219, 188.
    [12] Ardo, S.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115.
    [13] Preat, J.; Jacquemin, D.; Perpete, E. A. Energy & Environmental Science 2010, 3, 891.
    [14] Ning, Z. J.; Fu, Y.; Tian, H. Energy & Environmental Science 2010, 3, 1170.
    [15] Ruhle, S.; Greenshtein, M.; Chen, S. G.; Merson, A.; Pizem, H.; Sukenik, C. S.; Cahen, D.; Zaban, A. J. Phys. Chem. B 2005, 109, 18907. 1936–1944.
    [16] Cho, Y. M.; Choi, W. Y.; Lee, C. H.; Hyeon, T.; Lee, H. I. Environ. Sci. Technol. 2001, 35, 966.
    [17] Gokilamani, N.; Muthukumarasamy, N.; Thambidurai, M.; Ranjitha, A.; Velauthapillai, D. J. Sol-Gel Sci. Technol. 2013, 66, 212.
    [18] Chien, C. Y.; Hsu, B. D. Sol. Energy 2013, 98, 203.
    [19] Pina, F.; Melo, M. J.; Laia, C. A. T.; Parola, A. J.; Lima, J. C. Chem. Soc. Rev. 2012, 41, 869.
    [20] Quina, F. H.; Moreira, P. F.; Vautier-Giongo, C.; Rettori, D.; Rodrigues, R. F.; Freitas, A. A.; Silva, P. F.; Macanita, A. L. Pure Appl. Chem. 2009, 81, 1687.
    [21] McDougall, G. J.; Fyffe, S.; Dobson, P.; Stewart, D. Phytochemistry 2007, 68, 1285.
    [22] Wrolstad, R. E.; Durst, R. W.; Lee, J. Trends Food Sci. Technol. 2005, 16, 423.
    [23] Cicerone, C. M.; Nerger, J. L. Vision Res. 1989, 29, 115.
    [24] Field, G. D.; Chichilnisky, E. J. In Annual Review of Neuroscience; Annual Reviews: Palo Alto, 2007; Vol. 30, p 1.
    [25] Hurvich, L. M.; Jameson, D. Psychol. Rev. 1957, 64, 384.
    [26] Hao, S. C.; Wu, J. H.; Huang, Y. F.; Lin, J. M. Sol. Energy 2006, 80, 209.
    [27] Wongcharee, K.; Meeyoo, V.; Chavadej, S. Sol. Energy Mater. Sol. Cells 2007, 91, 566.
    [28] Polo, A. S.; Iha, N. Y. M. Sol. Energy Mater. Sol. Cells 2006, 90, 1936.
    [29] Calogero, G.; Di Marco, G. Sol. Energy Mater. Sol. Cells 2008, 92, 1341.
    [30] Calogero, G.; Di Marco, G.; Caramori, S.; Cazzanti, S.; Argazzi, R.; Bignozzi, C. A. Energy & Environmental Science 2009, 2, 1162.
    [31] Espinosa, R.; Zumeta, I.; Santana, J. L.; Martinez-Luzardo, F.; Gonzalez, B.; Docteur, S.; Vigil, E. Sol. Energy Mater. Sol. Cells 2005, 85, 359.
    [32] Figueiredo, P.; Elhabiri, M.; Saito, N.; Brouillard, R. J. Am. Chem. Soc. 1996, 118, 4788.
    [33] Elhabiri, M.; Figueiredo, P.; Toki, K.; Saito, N.; Brouillard, R. J. Chem. Soc.-Perkin Trans. 2 1997, 355.
    [34] Kim, H. J.; Bin, Y. T.; Karthick, S. N.; Hemalatha, K. V.; Raj, C. J.; Venkatesan, S.; Park, S.; Vijayakumar, G. Int. J. Electrochem. Sci. 2013, 8, 6734.
    [35] Fossen, T.; Cabrita, L.; Andersen, O. M. Food Chem. 1998, 63, 435.
    [36] Ooyama, Y.; Harima, Y. ChemPhysChem 2013, 14, 871.
    [37] Tennakone, K.; Kumara, G.; Kottegoda, I. R. M.; Wijayantha, K. G. U. Semicond. Sci. Technol. 1997, 12, 128.
    [38] Calogero, G.; Yum, J. H.; Sinopoli, A.; Di Marco, G.; Gratzel, M.; Nazeeruddin, M. K. Sol. Energy 2012, 86, 1563.
    [39] Shanmugam, V.; Manoharan, S.; Anandan, S.; Murugan, R. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2013, 104, 35.
    [40] Calogero, G.; Sinopoli, A.; Citro, I.; Di Marco, G.; Petrov, V.; Diniz, A. M.; Parola, A. J.; Pina, F. Photochem. Photobiol. Sci. 2013, 12, 883.
    [41] Nguyen, N. H.; Hu, A.; Wen, J. Z. Nanosci. Nanotechnol. Lett. 2013, 5, 27.
    [42] Williams, C. A.; Grayer, R. J. Nat. Prod. Rep. 2004, 21, 539.
    [43] McHale, J. L. J. Phys. Chem. Lett. 2012, 3, 587.
    [44] Boardman, N. K. Annu. Rev. Plant Physiol. Plant Molec. Biol. 1977, 28, 355.
    [45] Hinsch, A.; Kroon, J. M.; Kern, R.; Uhlendorf, I.; Holzbock, J.; Meyer, A.; Ferber, J. Prog. Photovoltaics 2001, 9, 425.
    [46] Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2013, 115, 202.
    [47] Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. Appl. Phys. Lett. 2005, 86.
    [48] Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Coord. Chem. Rev. 2004, 248, 1381.
    [49] Henderson, M. A. Surf. Sci. Rep. 2011, 66, 185.
    [50] Kalyanasundaram, K.; Gratzel, M. Coord. Chem. Rev. 1998, 177, 347.
    [51] Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215.
    [52] Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M. J. Am. Chem. Soc. 2004, 126, 14943.
    [53] Meng, S.; Ren, J.; Kaxiras, E. Nano Lett. 2008, 8, 3266.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE