簡易檢索 / 詳目顯示

研究生: 温家瑋
Wen, Jia-Wei
論文名稱: 激子再結合對有機發光二極體之影響
Effect of Exciton Recombination on Organic Light-Emitting Diode
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員: 王欽戊
Wang, Ching-Wu
岑尚仁
Chen, Sun-Zen
薛景中
Shyue, Jing-Jong
蔡永誠
Tasi, Yung-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 106
中文關鍵詞: 有機發光二極體再結合電性模擬高電子遷移率
外文關鍵詞: OLED, Recombination, Simulation, High elecron mobility
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體(Organic Light Emitting Diode, OLED),具有自發性、輕薄、廣視角、高對比、高反應速率、全彩化等特質,它已成功應用在手機及電視,成為新世代的主流顯示技術;而其低耗電、平面光源、高光質、光線柔和等特性,亦使它成為最具潛力的照明技術。其中,藍光在高品質全彩顯示器應用,提供色彩飽和度,使其具有更寬廣的色域;然而,藍光相對於紅光、綠光而言,其元件效率較不理想,因此提升藍光元件的效率,極為重要;這也對於攜帶型顯示器,亦是一項重大的研究。本研究利用電性模擬(SETFOS) 及元件研製,探討藍光OLED元件中,其激子再結合的差異;據此,我們分別利用兩種主體材料4,4-bis(carbazol-9-yl)biphenyl (CBP)與4,4′,4″-tris(carbazol-9-yl) triphenylamine (TCTA),並摻雜天藍光染料;以及電子傳輸材料bathophenanthroline (Bphen) 和 2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) ,互相搭配組合。結果顯示,使用主體CBP與Bphen的組合,和TPBi相比時,有最好的元件表現;其能量效率從2.4提升至12.5 lm/W,增幅為23.8%;電流效率從2.9提升至12.4 Cd/A,增幅為30.5%;外部量子效率從1.2提升至5.1 %,增幅為30.8%;並且,再結合率從6.5×101提升至3.5×106 cm-3s-1,增加105倍。此良好的元件表現,可歸因於Bphen 具有 (1) 較深的最低未填滿分子軌域(Lowest Unoccupied Molecular Orbital, LUMO) (-2.9 eV) 降低電子注入主體CBP的能障,使載子較為平衡的注入;(2) 較深的最高填滿分子軌域(Highest Occupied Molecular Orbital, HOMO)(-6.3 eV),使得電洞有效的侷限在發光層中,增加有效的再結合區;(3) 較高的電子遷移率,使在相同電壓時,較TPBi有更有效的電子傳輸,增加發光層中再結合機率,提升元件表現。


    Organic Light-Emitting Diode (OLED) has the characteristics of spontaneity, light-ness, wide viewing angle, high contrast, high reaction rate, and full color. It has been successfully applied to mobile phones and televisions, becoming the mainstream of the new generation. Moreover, it’s low power consumption, flat light source, high light quality, soft light, and other characteristics make it becoming the most potential lighting technology. However, blue light is used in high-quality and full-color dis-play applications to provide color saturation, which makes it have a wider color gamut; however, the efficiency of the blue device is less than the red and green device, so the improvement of the blue device efficiency is extremely important. In the pre-sent work, we used electrical simulation (SETFOS) and device fabrication to inves-tigate the role
    of charge-transporting materials on exciton recombination and electric field distribu-tion across the emissive and electron-transporting layers in blue OLED devices. The devices are composed of two host materials 4,4-bis(carbazol-9-yl)biphenyl (CBP) and 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA), doped with blue-light dyes; batchhenanthroline (Bphen) and 2,2',2" -(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi) as electron materials. The outcome is CBP:Bphen has the best performance compared with TPBi as ETL; the power efficacy is increased from 2.4 to 12.5 lm/W, an increment is 23.8%; current efficacy is increased from 2.9 to 12.4 Cd/ A, an increment is 30.5%; external quan-tum efficiency is increased from 1.2 to 5.1%, an increment is 30.8%; also, the re-combination rate increased from 6.5x101 to 3.5x106 cm-3s-1, is greater than CBP:TPBi composed 105 times. This good component performance can be attributed to Bphen's (1) deeper Unoccupied Molecular Orbital (LUMO) (-2.9 eV), which re-duces the energy barrier of electrons injection into the host CBP, making the carrier more balanced; (2) deeper Highest Occupied Molecular Orbital (HOMO) (-6.3 eV), which effectively block the holes in the emissive layer and increases the effective recombination zone; (3) higher electron mobility, which makes the electron transfer more efficient than TPBi at the same voltage, increases the generation of excitons probability in the emissive layer, and improves the performance of the devices.

    摘要 I Abstract III 獻 V 致謝 VI 目錄 X 表目錄 XIV 圖目錄 XV 壹、緒論 1 貳、文獻回顧 3 2-1、有機發光二極體的歷史發展 3 2-2、有機發光二極體的放光原理 25 2-3、有機發光二極體的能量傳遞機制 33 2-4、有機發光二極體的元件效率 36 2-5、有機發光二極體的材料發展 38 2-5-1、陽極材料 38 2-5-2、電洞注入材料 39 2-5-3、電洞傳輸材料 39 2-5-4、發光材料 40 2-5-5、電子傳輸材料 41 2-5-6、電子注入材料 42 2-5-7、陰極材料 42 參、實驗方式 43 3-1、使用之材料 43 3-1-1、材料功能、全名及簡稱 43 3-1-2、本研究所使用有機材料之化學結構式 45 3-2、元件設計及製備 49 3-2-1、元件電路設計 49 3-2-2、基板清潔與表面前處理 50 3-2-3、發光層之製備 50 3-2-4、熱蒸鍍機台 51 3-2-5、成膜鍍率測定 52 3-2-6、有機層製備 53 3-2-7、無機層製備 53 3-3、元件特性量測及元件效率計算 53 3-4、元件電性模擬 56 肆、結果與討論 58 4-1、本實驗之元件結構 58 4-2、主體材料的影響 60 4-2-1、元件再結合率 61 4-2-2、元件效率 65 4-3、電子傳輸層的影響 69 4-3-1、無電洞傳輸層下 69 4-3-1-1、元件再結合 70 4-3-1-2、元件效率 74 4-3-2、有電洞傳輸層下 78 4-3-2-1、元件再結合率 80 4-3-2-2、元件效率 84 4-4、發光層厚度的影響 89 4-4-1、元件再結合率 90 4-4-2、元件效率 92 伍、結論 96 陸、參考資料 99 附錄、個人著作目錄 105 (A) 期刊論文 105 (B) 研討會論文 105 (C) 獲獎紀錄 106

    [1] O. Prache, Displays, vol. 22, pp. 49-56, 2001.
    [2] J. Y. Lee, J. H. Kwon, and H. K. Chung, "High efficiency and low power consumption in active matrix organic light emitting diodes," Organic electronics, vol. 4, no. 2, pp. 143-148, 2003.
    [3] F. So, J. Kido, and P. Burrows, "Organic light-emitting devices for solid-state lighting," Mrs Bulletin, vol. 33, no. 07, pp. 663-669, 2008.
    [4] J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, "Highly flexible transparent electrodes for organic light-emitting diode-based displays," Applied Physics Letters, vol. 85, no. 16, pp. 3450-3452, 2004.
    [5] H. Lim et al., "Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates," Advanced Materials, vol. 14, no. 18, pp. 1275-1279, 2002.
    [6] S. R. J. O. E. Forrest, "The road to high efficiency organic light emitting devices," vol. 4, no. 2-3, pp. 45-48, 2003.
    [7] J.-H. Jou et al., "Efficient fluorescent white organic light-emitting diodes with blue-green host of di (4-fluorophenyl) amino-di (styryl) biphenyl," vol. 8, no. 1, pp. 29-36, 2007.
    [8] J. H. Jou et al., "Nanodot‐Enhanced High‐Efficiency Pure‐White Organic Light‐Emitting Diodes with Mixed‐Host Structures," vol. 18, no. 1, pp. 121-126, 2008.
    [9] A. Wan, J. Hwang, F. Amy, and A. J. O. E. Kahn, "Impact of electrode contamination on the α-NPD/Au hole injection barrier," vol. 6, no. 1, pp. 47-54, 2005.
    [10] N. Koch, A. Elschner, J. Schwartz, and A. J. A. P. L. Kahn, "Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current–voltage characteristics," vol. 82, no. 14, pp. 2281-2283, 2003.
    [11] J.-H. Jou et al., "Small polymeric nano-dot enhanced pure-white organic light-emitting diode," vol. 9, no. 3, pp. 291-295, 2008.
    [12] F. Nüesch et al., "Doping‐Induced Charge Trapping in Organic Light‐Emitting Devices," vol. 15, no. 2, pp. 323-330, 2005.
    [13] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. J. A. P. L. Taga, "Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer," vol. 79, no. 2, pp. 156-158, 2001.
    [14] Z. Xie, L. Hung, and S. J. A. P. L. Lee, "High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure," vol. 79, no. 7, pp. 1048-1050, 2001.
    [15] B. W. D'Andrade, R. J. Holmes, and S. R. J. A. M. Forrest, "Efficient organic electrophosphorescent white‐light‐emitting device with a triple doped emissive layer," vol. 16, no. 7, pp. 624-628, 2004.
    [16] M. C. A. Bernanose, and P. Vouaux, "A new method of emission of light by certain organic compounds," J. Chim. Phys, vol. 50, pp. 64-68, 1953.
    [17] M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, no. 8, pp. 2042-2043, 1963.
    [18] W. Helfrich and W. Schneider, "Transients of volume‐controlled current and of recombination radiation in anthracene," The Journal of Chemical Physics, vol. 44, no. 8, pp. 2902-2909, 1966.
    [19] P. Vincett, W. Barlow, R. Hann, and G. Roberts, "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films," Thin solid films, vol. 94, no. 2, pp. 171-183, 1982.
    [20] R. Partridge, "Electroluminescence from polyvinylcarbazole films: 4. Electroluminescence using higher work function cathodes," Polymer, vol. 24, no. 6, pp. 755-762, 1983.
    [21] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987.
    [22] J. J. P. R. L. Simmons, "Richardson-Schottky effect in solids," vol. 15, no. 25, p. 967, 1965.
    [23] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, "Organic electroluminescent device with a three-layer structure," Japanese journal of applied physics, vol. 27, no. 4A, p. L713, 1988.
    [24] C. W. Tang, S. A. VanSlyke, and C. Chen, "Electroluminescence of doped organic thin films," Journal of Applied Physics, vol. 65, no. 9, pp. 3610-3616, 1989.
    [25] J. Burroughes et al., "Light-emitting diodes based on conjugated polymers," nature, vol. 347, no. 6293, pp. 539-541, 1990.
    [26] W. S. Jeon, T. J. Park, S. Y. Kim, R. Pode, J. Jang, and J. H. J. O. E. Kwon, "Ideal host and guest system in phosphorescent OLEDs," vol. 10, no. 2, pp. 240-246, 2009.
    [27] M. Era, C. Adachi, T. Tsutsui, and S. Saito, "Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter," Chemical physics letters, vol. 178, no. 5-6, pp. 488-490, 1991.
    [28] J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, "1, 2, 4-triazole derivative as an electron transport layer in organic electroluminescent devices," Japanese journal of applied physics, vol. 32, no. 7A, p. L917, 1993.
    [29] J. Kido, M. Kimura, and K. Nagai, "Multilayer white light-emitting organic electroluminescent device," Science, vol. 267, no. 5202, p. 1332, 1995.
    [30] J. Kido, H. Shionoya, and K. Nagai, "Single‐layer white light‐emitting organic electroluminescent devices based on dye‐dispersed poly (N‐vinylcarbazole)," Applied Physics Letters, vol. 67, no. 16, pp. 2281-2283, 1995.
    [31] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
    [32] G. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, "Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices," Applied Physics Letters, vol. 73, no. 9, pp. 1185-1187, 1998.
    [33] "J. Kido and T. Mazukami, US. Patent, No. 6013384 (2000)."
    [34] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, no. 6698, pp. 151-154, 1998.
    [35] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," Journal of Applied Physics, vol. 90, pp. 5048-5051, 2001.
    [36] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, "Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material," Applied Physics Letters, vol. 73, no. 6, pp. 729-731, 1998.
    [37] J. Kido and T. Matsumoto, "Bright organic electroluminescent devices having a metal-doped electron-injecting layer," Applied Physics Letters, vol. 73, no. 20, pp. 2866-2868, 1998.
    [38] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Liu, "Low-voltage organic electroluminescent devices using pin structures," Applied Physics Letters, vol. 80, no. 1, pp. 139-141, 2002.
    [39] T. Matsumoto et al., "27.5 L: Late‐News Paper: Multiphoton Organic EL device having Charge Generation Layer," in SID Symposium Digest of Technical Papers, 2003, vol. 34, no. 1, pp. 979-981: Wiley Online Library.
    [40] L. Liao, K. P. Klubek, and C. W. Tang, "High-efficiency tandem organic light-emitting diodes," Applied physics letters, vol. 84, no. 2, pp. 167-169, 2004.
    [41] Y. Shao and Y. Yang, "White organic light-emitting diodes prepared by a fused organic solid solution method," Applied Physics Letters, vol. 86, no. 7, p. 073510, 2005.
    [42] J.-H. Jou, Y.-S. Chiu, C.-P. Wang, R.-Y. Wang, and H.-C. Hu, "Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source," Applied physics letters, vol. 88, no. 19, p. 193501, 2006.
    [43] Y. Sun and S. R. Forrest, "Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids," Nature photonics, vol. 2, no. 8, pp. 483-487, 2008.
    [44] S. Reineke et al., "White organic light-emitting diodes with fluorescent tube efficiency," Nature, vol. 459, no. 7244, pp. 234-238, 2009.
    [45] Z. Wang et al., "Unlocking the full potential of organic light-emitting diodes on flexible plastic," Nature Photonics, vol. 5, no. 12, pp. 753-757, 2011.
    [46] T. J. Bright et al., "Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films," vol. 114, no. 8, p. 083515, 2013.
    [47] T.-H. Han et al., "Extremely efficient flexible organic light-emitting diodes with modified graphene anode," Nature Photonics, vol. 6, no. 2, pp. 105-110, 2012.
    [48] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, vol. 492, no. 7428, pp. 234-238, 2012.
    [49] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. J. N. P. Adachi, "Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence," vol. 8, no. 4, p. 326, 2014.
    [50] B. Zhao et al., "Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host," vol. 5, p. 10697, 2015.
    [51] T. A. Lin et al., "Sky‐blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine‐triazine hybrid," vol. 28, no. 32, pp. 6976-6983, 2016.
    [52] D. Zhang et al., "High‐Efficiency Fluorescent Organic Light‐Emitting Devices Using Sensitizing Hosts with a Small Singlet–Triplet Exchange Energy," vol. 26, no. 29, pp. 5050-5055, 2014.
    [53] D. Zhang et al., "Highly efficient full-color thermally activated delayed fluorescent organic light-emitting diodes: extremely low efficiency roll-off utilizing a host with small singlet–triplet splitting," vol. 9, no. 5, pp. 4769-4777, 2017.
    [54] T.-L. Wu et al., "Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off," vol. 12, no. 4, p. 235, 2018.
    [55] J. H. Jou et al., "Candle Light‐Style Organic Light‐Emitting Diodes," Advanced Functional Materials, vol. 23, no. 21, pp. 2750-2757, 2013.
    [56] A. Dodabalapur, "Organic light emitting diodes," Solid State Communications, vol. 102, pp. 259-267, 1997.
    [57] M. Lenzlinger and E. J. J. o. A. p. Snow, "Fowler‐Nordheim tunneling into thermally grown SiO2," vol. 40, no. 1, pp. 278-283, 1969.
    [58] W. Gill, "Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole," Journal of Applied Physics, vol. 43, no. 12, pp. 5033-5040, 1972.
    [59] U. Wolf, V. Arkhipov, and H. Bässler, "Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation," Physical Review B, vol. 59, no. 11, p. 7507, 1999.
    [60] S. Barth et al., "Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation," Physical Review B, vol. 60, no. 12, p. 8791, 1999.
    [61] P. J. J. o. P. D. A. P. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," vol. 3, no. 2, p. 151, 1970.
    [62] "M. A. Lampert and P. Mark, "Current injection in solids," 1970.."
    [63] P. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, vol. 3, no. 2, p. 151, 1970.
    [64] L. G. Thompson and S. Webber, "External heavy atom effect on the phosphorescence spectra of some halonaphthalenes," The Journal of Physical Chemistry, vol. 76, no. 2, pp. 221-224, 1972.
    [65] S. McGlynn, T. Azumi, and M. J. T. J. o. C. P. Kasha, "External Heavy‐Atom Spin—Orbital coupling effect. V. absorption studies of triplet states," vol. 40, no. 2, pp. 507-515, 1964.
    [66] A. Jaboski, "Efficiency of anti-Stokes fluorescence in dye s," Nature, vol. 131, no. 839-840, p. 21, 1933.
    [67] T. Förster, "Zwischenmolekulare energiewanderung und fluoreszenz," Annalen der physik, vol. 437, no. 1‐2, pp. 55-75, 1948.
    [68] D. L. Dexter, "A theory of sensitized luminescence in solids," The Journal of Chemical Physics, vol. 21, no. 5, pp. 836-850, 1953.
    [69] D. Zhang et al., "Simultaneous enhancement of efficiency and stability of phosphorescent OLEDs based on efficient Forster energy transfer from interface exciplex," vol. 8, no. 6, pp. 3825-3832, 2016.
    [70] C.-N. Yang and R. L. J. P. r. Mills, "Conservation of isotopic spin and isotopic gauge invariance," vol. 96, no. 1, p. 191, 1954.
    [71] M. Klessinger and J. Michl, Excited states and photochemistry of organic molecules. Wiley-VCH, 1995.
    [72] J. Yang and J. Shen, "Doping effects in organic electroluminescent devices," Journal of applied physics, vol. 84, no. 4, pp. 2105-2111, 1998.
    [73] Z. Liu, J. Pinto, J. Soares, and E. Pereira, "Efficient multilayer organic light emitting diode," Synthetic metals, vol. 122, no. 1, pp. 177-179, 2001.
    [74] M. G. Mason, L. S. Hung, C. W. Tang, S. Lee, K. W. Wong, and M. Wang, "Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices," Journal of Applied Physics, vol. 86, no. 3, pp. 1688-1692, 1999.
    [75] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, "Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies," Journal of Applied Physics, vol. 87, no. 1, pp. 295-298, 2000.
    [76] S. A. Van Slyke, C. Chen, and C. W. Tang, "Organic electroluminescent devices with improved stability," Applied physics letters, vol. 69, no. 15, pp. 2160-2162, 1996.
    [77] A. Elschner et al., "PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes," Synthetic metals, vol. 111, pp. 139-143, 2000.
    [78] G. Sakamoto et al., "Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules," Applied Physics Letters, vol. 75, no. 6, pp. 766-768, 1999.
    [79] C. Giebeler, H. Antoniadis, D. Bradley, and Y. Shirota, "Influence of the hole transport layer on the performance of organic light-emitting diodes," Journal of applied physics, vol. 85, no. 1, 1999.
    [80] J. Lee et al., "Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices," Applied Physics Letters, vol. 93, no. 12, p. 123306, 2008.
    [81] "J. Shi, C. W. Tang and C. H. Chen, US. Patent, No. 5646948 (1997)."
    [82] T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, "Organic EL cells using alkaline metal compounds as electron injection materials," IEEE Transactions on electron devices, vol. 44, no. 8, pp. 1245-1248, 1997.
    [83] C. Ganzorig, K. Suga, and M. Fujihira, "Alkali metal acetates as effective electron injection layers for organic electroluminescent devices," Materials Science and Engineering: B, vol. 85, no. 2, pp. 140-143, 2001.
    [84] T. Brown et al., "Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes," Journal of applied physics, vol. 93, no. 10, pp. 6159-6172, 2003.
    [85] L. Hung, "Efficient and stable organic light-emitting diodes with a sputter-deposited cathode," Thin Solid Films, vol. 363, no. 1, pp. 47-50, 2000.
    [86] "Semiconducting Thin Film Optics Simulator (SETFOS) by Fluxim AG, Switzerland, www.fluxim.com.."
    [87] J.-H. Jou, J.-W. Weng, S. D. Chavhan, R. A. K. Yadav, and T.-W. J. J. o. P. D. A. P. Liang, "Investigation of charge-transporting layers for high-efficiency organic light-emitting diode," vol. 51, no. 45, p. 454002, 2018.

    QR CODE