研究生: |
黃琮傑 Huang, Tsung-Jie |
---|---|
論文名稱: |
結合太陽煙囪的平板型太陽能集熱器之CFD分析探討 The investigation and analysis of solar collector combined with solar chimney by using CFD |
指導教授: |
白寶實
Pei, Bau-Shei 洪祖全 Hung, Tzu-chen |
口試委員: |
曾永信
Tseng, Yung-Shin 苑穎瑞 Yuann, Yng-ruey |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 太陽煙囪 、太陽能集熱器 、計算流體力學 、太陽射線追蹤法 |
外文關鍵詞: | Solar chimney, Solar collector, CFD, Solar Ray Tracing |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽能集熱器具有組裝簡易,無效率衰減問題等優點,並且能夠裝設於牆壁、屋頂上頭,不僅能收集廢熱,也具有以廢熱發電的可能性。本研究利用CFD工具模擬太陽能集熱器在不同條件下的出口溫度與效率,希望能找到具有高溫度差且高效率的集熱器形式;同時也使用實驗驗證CFD的結果合理性與可信度。在模擬方面,本研究使用solar load model進行太陽輻射模擬,以incompressible ideal gas作為浮力變化的演算法,並且考慮了在高度方向的對流熱傳係數之變化。而在實驗方面,實驗裝置由玻璃、封閉空氣層、鋁板、集熱流道、絕熱材以及流道漸縮口所組成,以日照計量測太陽熱通量。文中探討了玻璃的種類、集熱流道寬度、風扇速度以及集熱器形式等等參數。最終找出了在特定的裝置配置下,不同流速、不同熱通量以及不同裝置高度的規律並且以無因次數呈現。
solar air collector concept is used to induce natural cooling and reduce heat leak into the indoor simultaneously. In this study, the waste heat can be potentially employed for electricity generation by the organic Rankie cycle (ORC) system. The purpose of this study is to perform the flow and heat of solar ventilation by commercial CFD code. To Make numerical result accurate, the Solar Ray Tracing was used instead of set isothermal or constant heat flux on the wall. This study including both experiment and numerical simulation studies how to efficiently gather this solar thermal energy. The local heat transfer correlation was investigated to predict surrounding wind speed upon device cover. Three glass sort and several channel aspect ratio was compared to know the best configuration. It is also discuss the stagnant layer thickness, emissivity on the illustrated surface, mass flow rate and device height. Consequently, the relationship between mass flow rate and device height is found to know the suitable mass flow rate at different device height.
[1] Peixoto, J.P. and A.H. Oort, 1992: Physics of Climate. American Institute of Physics, New York, pp.520
[2] Courtesy of Rolf Philippona, MeteoSwiss, Payerne.
[3] B. F. Armaly, T. S. Chen and M. Ramachandran, "Correlations for laminar mixed convection on vertical, inclined and horizontal flat plates with uniform surface heat flux," Int. J. Heat Mass Transfer., vol. 30, no. 2, pp. 405-408, 1987.
[4] K. Kudo, T. Kato, H. Chida, S. Takagi and N. Tsui, “Modelling of combined forced- and natural-convection heat transfer over upward-facing horizontal heated flat plates,” International Journal of Energy Research, Vol.27 pp.327-335, 2003
[5] Orhan Aydin, Laila Gousseous, ” Fundamental correlations for laminal and turbulent free convection from a uniformly heated vertical plate,” International Journal of Heat and Mass Transfer, Vol.44, pp.4605-4611, 2001
[6] Fumiyoshi Kimura and Kenzo Kitamura, “Fluid Flow and Heat Transfer of Natural Convection Adjacent to Upward-Facing, Inclined, Heated Plates (Air Case),” Heat Transfer-Asian Research, Vol.39, No.6, 2010
[7] Ernani Sartori, “Convection coefficient equations for forced air,” Solar Energy, vol. 80, pp.1063-1071, 2006
[8] S. Sharples and P. S. Charlesworth,”Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector,” Solar energy, vol. 62, No.2, pp.69-77, 1998
[9] Suresh Kumar, S.C. Mullick, “Wind heat transfer coefficient in solar collectors in outdoor conditions,” Solar energy, vol. 84, pp. 956-963, 2010
[10] M.C. Rodríguez-Hidalgo, P.A. Rodríguez-Aumente, A. Lecuona, G.L. Gutiérrez-Urueta, R. Ventas , “Flat plate thermal solar collector efficiency: Transient behavior under working conditions. Part I: Model description and experimental validation,” Applied Thermal Engineering, vol. 31, pp. 2394-2404, 2011
[11] Rakesh Kumar, Marc A. Rosen, "Performance evaluation of a double pass PV/T solar air heater with and without fins," Applied Thermal Engineering, vol. 31, pp. 1402-1410, 2011
[12] M. Rubin, “Optical Constant and Bulk Optical Properties of Soda Lime Silica Glass for Windows,” Solar Energy Materials, Vol.12, pp. 275-278, 1985
[13] Vicente de P. NICOLAU, Fernando P. MALUF, “ DETERMINATION OF RADIATIVE PROPERTIES OF COMMERCIAL GLASS,” Proc.18th Conf. on Passive and Low Energy Architecture, Floriannopolis, Brazil, November, 2001
[14] Rei Kitamura, Laurent Pilon, and Miroslaw Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Applied Optics, Vol.46, No.33, pp.8113-8133, 2007
[15] ANSYS Inc. ANSYS FLUENT V14 User’s Guide; 2011.
[16] ASHRAE Fundamentals (SI ed.);2013
[17] ASHRAE Fundamentals (SI ed.);2001
[18] P. J. R. Laybourn, J. P. Dakin, W. A. Gambling, “A Photometer to Measure Light Scattering in Optical Glass,” Opto-electronics, vol. 2, pp. 36-42, 1970
[19] Irvine TF, Liley P. Steam and gas tables with computer equations. San Diego: Academic Press; 1984.
[20] P.T. Tsilingiris, “Thermophysical and transport properties of humid air at temperature range between 0 and 100℃,” Energy Conversion and management, Vol.49, pp. 1098-1110, 2008
[21] D. T. Gillespie, A. L. Olsen and L. W. Nichols, “Transmittance of Optical Materials at High Temperatures in the 1-mu to 12-mu Range,” Applied Optics, Vol.4, No.11, 1965
[22] A. Barletta, "Fully developed mixed convection and flow reversal in a vertical rectangular duct with uniform wall heat flux," International Journal of Heat and Mass Transfer, vol. 45, pp. 641-654, 2002.
[23] Iqbal, M. 1983. An introduction to solar radiation. Academic Press, Toronto.
[24] Keenan, Chao, Keyes, Gas Tables, Wiley, 1984
[25] J.P. Holman, (2010), Heat transfer Tenth Edition, McGraw-Hill, New York