簡易檢索 / 詳目顯示

研究生: 江英傑
Jiang, Ing Jye
論文名稱: 陰道滴蟲中Myb2蛋白與豹蛙中onconase蛋白的結構與動態
The structure and dynamics of Myb2 protein from Tricomonas vaginalis and onconase from Rana pipiens
指導教授: 黃太煌
Huang, Tai Huang
蘇士哲
Sue, Shih-che
口試委員: 呂平江
Lyu, Ping Chiang
林達顯
Lin, Da Hsien
張七鳳
Chang, Chi Fon
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 98
中文關鍵詞: 核磁共振陰道滴蟲豹蛙弛豫色散
外文關鍵詞: myb2, Rana pipens, onconase, relaxation dispersion
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討陰道滴蟲裡 Myb2 蛋白(tvMyb2)以及豹蛙的 onconase 蛋白的結構與動態。在生物界中 Myb 蛋白為一個龐大的家族有著有著各式各樣的功能。多數的 Myb 蛋白都是屬於可以與去氧核醣核酸結合的轉譯因子。本篇研究了陰道滴蟲內的類Myb蛋白的結構與動態,tvMyb2 蛋白參與了鐵誘導的 ap65-1 基因的轉譯機制。Myb2 中具有最小結構的單位被鑑定為40-156 的殘基,並保有與全長蛋白相近的啟動子結合能力。類 Myb 蛋白的轉譯因子 tvMyb2 的結構與動態將被深入探討,tvMyb2 蛋白參與了鐵誘導的 ap65-1 基因的轉譯機制。tvMyb2 裡最小具結構性的單位被鑑定為 40-156 的殘基,這片段保有跟全長蛋白相近的啟動子結合能力。未結合的 tvMyb2 40-156 具有較鬆散的構型。一旦與啟動子結合後,其構型將會重新排列並形成較穩定的結構。tvMyb2 與啟動子的複合物結晶結構顯示出 tvMyb2 辨識啟動子中 5’-a/gACGAT-3’這段特異性的序列。此外,位於 R2 模段上游的 Lys49 殘基亦參與了這段特異性序列的辨識。特別的是,與另一個 tvMyb1 相較,tvMyb2 40-156 採用跟 tvMyb1 35-141 /MRE-1 複合物的 HADDOCK模型結構相反的方位與啟動子結合。Onconase 蛋白同時亦被稱為 ranpirnase 或 P-30 蛋白,過去研究中,此蛋白主要由豹蛙蛙卵的萃取物中純化而得,並在各項實驗中發現其具有抗癌的特性,另在治療腫瘤方面已經進展到第三期的臨床試驗。醣基化作用對 onconase 蛋白的結構與動態上的影響將在此被探討。結果顯示,醣基對於 onconase 蛋白的結構與動態的影響甚微。再者,使用 CPMG-based 弛豫色散的實驗方法可觀察到當 onconase 蛋白跟核酸結合後,會產生新的微秒尺度的運動。更深入的檢視此運動與配體結合動力學的關係,將有助於了解蛋白質動態在催化機制中扮演的角色以及藥物設計上的應用。


    In this thesis we investigated the structure and dynamics of Myb2 protein from Trichomonas vaginalis (tvMyb2) and onconase from Rana pipiens. The Myb proteins consist of a large family of proteins with diverse functions across the biological kingdom. Most Myb proteins function as transcriptional factors by binding to DNA. Here we investigated the structure and dynamics of Myb-like transcriptional factor, tvMyb2, from Trichomonas vaginalis involved in iron-inducible transcription of ap65-1 gene. We first defined a fragment of tvMyb2 comprising residues 40–156 (tvMyb2 40–156 ) as the minimum structural unit that retains near full binding affinity with the promoter DNAs. The DNA-free tvMyb2 40–156 has a flexible and open conformation. Upon binding to the promoter DNA elements, tvMyb2 40–156 undergoes significant conformational re-arrangement and structure stabilization. Crystal structures of tvMyb2 40–156 in complex with promoter element-containing DNA oligomers showed that 5’-a/gACGAT-3’ is the specific base sequence recognized by tvMyb2 40–156 , which does not fully conform to that
    of the Myb binding site sequence. Furthermore, Lys49, upstream of the R2 motif (52–102), also participates in specific DNA sequence recognition. Intriguingly, tvMyb2 40–156 binds to the promoter elements in an orientation opposite to that proposed in the HADDOCK model of the tvMyb1 35–141 /MRE-1-MRE-2r complex. Onconase (rONC), also known as ranpirnase or P-30 protein, initially purified from extracts of Rana pipiens oocytes and early embryos, exhibits anticancer activity both in vitro and in vivo and is in phase III clinical trials for tumor therapy. We examined the effect of glycosylation on the structural and dynamic of onconase. The results showed that the glycan has little effect on the overall structure and dynamics of onconase. Moreover, we employed CPMG-based relaxation dispersion method and observed a novel ms time-scale protein motion elicited by nucleic acid binding. Further examination of the correlation between this collective
    motion and ligand binding kinetics may provide better understanding the role of dynamics in the catalytic mechanism and drug design of onconase.

    III Content 摘要 --------------------------------------------------------------------------------------------------------- I ABSTRACT ----------------------------------------------------------------------------------------------- II CHAPTER 1 ------------------------------------------------------------------------- INTRODUCTION -------------------------------------------------------------------------------------------------------------- 1 1.1 Protein structure, dynamics and function -------------------------------------------------------------- 1 CHAPTER 2 ---- MOLECULAR RECOGNITION OF THE AP65-1 PROMOTER BY MYB2 PROTEIN FROM TRICHOMONAS VAGINALIS ------------------------------------------------- 5 2.1 Myb protein & Trichomonas vaginalis -------------------------------------------------------------------- 5 2.2 Characterization of tvMyb2 --------------------------------------------------------------------------------------- 7 2.3 tvMyb2 and promoter interaction ----------------------------------------------------------------------------- 9 2.4 Structural information of MRE-1-12 & MRE-2-13 ------------------------------------------------- 11 2.5 Thermal Dynamics ------------------------------------------------------------------------------------------------------ 14 2.6 Structural comparison of DNA-free and DNA-bound Myb2 protein --------------- 17 2.7 Myb flexibility for DNA binding ---------------------------------------------------------------------------- 18 2.8 Myb DNA binding orientation --------------------------------------------------------------------------------- 20 2.9 Functional perspective------------------------------------------------------------------------------------------------ 22 CHAPTER 3 --- DYNAMIC PROFILE OF NATIVE AND GLYCOSYLATED ONCONASE ------------------------------------------------------------------------------------------------------------ 47 3.1 Onconase ----------------------------------------------------------------------------------------------------------------------- 47 3.2 Glycosylated ONC in P. pastoris system --------------------------------------------------------------- 49 IV 3.3 The isotope incorporation in P. pastoris expression -------------------------------------------- 50 3.4 The influence of the N-linked glycosylation in ygONC ------------------------------------ 51 3.5 Relaxation dispersion (RD) of ONC from E. coli ------------------------------------------------- 52 3.6 Analysis software and few notices ------------------------------------------------------------------------- 55 3.7 Conclusion -------------------------------------------------------------------------------------------------------------------- 56 CHAPTER 4 -------------------------------------------------------------- PROTOCOLS & RECIPES ------------------------------------------------------------------------------------------------------------ 68 4.1 GST-tvMyb2 protein preparation ----------------------------------------------------------------------------- 68 4.2 His-tvMyb2 40-156 protein preparation ------------------------------------------------------------------------- 69 4.3 Onconase protein preparation in E. coli ----------------------------------------------------------------- 71 4.3.1 Preparation of linear plasmid for electro-transformation-------------------------------- 71 4.3.2 Prepare Pichiapatoris competent cells------------------------------------------------------------------ 72 4.3.3 Expression and purification of onconase in P. pastoris system----------------------- 74 4.4 Onconase protein preparation in E. coli ----------------------------------------------------------------- 77 4.5 NMR experiments of Myb2 protein ------------------------------------------------------------------------ 79 4.5.1 Experiments for backbone assignment -------------------------------------------------------------- 79 4.5.2 Dynamics --------------------------------------------------------------------------------------------------------------- 80 4.5.3 RDC experiments-------------------------------------------------------------------------------------------------- 81 4.6 CPMG relaxation dispersion experiments of ONC protein -------------------------------- 81 REFERENCES ------------------------------------------------------------------------------------------ 83

    83

    References
    1. Whitford D: Proteins: structure and function: John Wiley & Sons; 2013.
    2. Huang YJ, Montelione GT: Structural biology: proteins flex to function. Nature 2005,
    438(7064):36-37.
    3. Henzler-Wildman K, Kern D: Dynamic personalities of proteins. Nature 2007, 450:964-972.
    4. Neudecker P, Lundström P, Kay LE: Relaxation dispersion NMR spectroscopy as a tool for
    detailed studies of protein folding. Biophysical journal 2009, 96(6):2045-2054.
    5. Korzhnev DM, Neudecker P, Mittermaier A, Orekhov VY, Kay LE: Multiple-site exchange
    in proteins studied with a suite of six NMR relaxation dispersion experiments: an
    application to the folding of a Fyn SH3 domain mutant. Journal of the American Chemical
    Society 2005, 127(44):15602-15611.
    6. Farber P, Darmawan H, Sprules T, Mittermaier A: Analyzing protein folding cooperativity
    by differential scanning calorimetry and NMR spectroscopy. Journal of the American
    Chemical Society 2010, 132(17):6214-6222.
    7. Schanda P, Brutscher B, Konrat R, Tollinger M: Folding of the KIX domain: characterization
    of the equilibrium analog of a folding intermediate using 15 N/13 C relaxation dispersion
    and fast 1 H/2 H amide exchange NMR spectroscopy. Journal of molecular biology 2008,
    380(4):726-741.
    8. Sugase K, Dyson HJ, Wright PE: Mechanism of coupled folding and binding of an
    84

    intrinsically disordered protein. Nature 2007, 447(7147):1021-1025.
    9. Tzeng S-R, Kalodimos CG: Dynamic activation of an allosteric regulatory protein. Nature
    2009, 462(7271):368-372.
    10. Bru ̈ schweiler S, Schanda P, Kloiber K, Brutscher B, Kontaxis G, Konrat R, Tollinger M: Direct
    observation of the dynamic process underlying allosteric signal transmission. Journal of
    the American Chemical Society 2009, 131(8):3063-3068.
    11. Popovych N, Sun S, Ebright RH, Kalodimos CG: Dynamically driven protein allostery.
    Nature structural & molecular biology 2006, 13(9):831-838.
    12. Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D: Linkage
    between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. Nature
    structural & molecular biology 2004, 11(10):945-949.
    13. Eisenmesser EZ, Bosco DA, Akke M, Kern D: Enzyme dynamics during catalysis. Science 2002,
    295(5559):1520-1523.
    14. Labeikovsky W, Eisenmesser EZ, Bosco DA, Kern D: Structure and dynamics of pin1 during
    catalysis by NMR. Journal of molecular biology 2007, 367(5):1370-1381.
    15. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky
    JJ, Kay LE, Kern D: Intrinsic dynamics of an enzyme underlies catalysis. Nature 2005,
    438(7064):117-121.
    16. Boehr DD, McElheny D, Dyson HJ, Wright PE: The dynamic energy landscape of
    dihydrofolate reductase catalysis. science 2006, 313(5793):1638-1642.
    85

    17. Fawzi NL, Ying J, Torchia DA, Clore GM: Probing exchange kinetics and atomic resolution
    dynamics in high-molecular-weight complexes using dark-state exchange saturation
    transfer NMR spectroscopy. Nature protocols 2012, 7(8):1523-1533.
    18. Libich DS, Fawzi NL, Ying J, Clore GM: Probing the transient dark state of substrate
    binding to GroEL by relaxation-based solution NMR. Proceedings of the National Academy of
    Sciences 2013, 110(28):11361-11366.
    19. Weston K: Myb proteins in life, death and differentiation. Curr Opin Genet Dev 1998,
    8(1):76-81.
    20. Ramsay RG, Gonda TJ: MYB function in normal and cancer cells. Nat Rev Cancer 2008,
    8(7):523-534.
    21. Lipsick JS: One billion years of Myb. Oncogene 1996, 13(2):223-235.
    22. Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura
    Y, Ishii S, Sarai A: The cavity in the hydrophobic core of Myb DNA-binding domain is
    reserved for DNA recognition and trans-activation. Nat Struct Mol Biol 1996, 3(2):178-187.
    23. Howe KM, Reakes CF, Watson RJ: Characterization of the sequence-specific interaction of
    mouse c-myb protein with DNA. EMBO J 1990, 9(1):161-169.
    24. Gabrielsen OS, Sentenac A, Fromageot P: Specific DNA binding by c-Myb: evidence for a
    double helix-turn-helix-related motif. Science 1991, 253(5024):1140-1143.
    25. Luscher B, Eisenman RN: New light on Myc and Myb. Part II. Myb. Genes Dev 1990,
    4(12B):2235-2241.
    86

    26. Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ, Ishii S: Delineation of three
    functional domains of the transcriptional activator encoded by the c-myb protooncogene.
    Proc Natl Acad Sci U S A 1989, 86(15):5758-5762.
    27. Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH: Viral myb oncogene encodes a
    sequence-specific DNA-binding activity. Nature 1988, 335(6193):835-837.
    28. Weston K: Extension of the DNA binding consensus of the chicken c-Myb and v-Myb
    proteins. Nucleic Acids Res 1992, 20(12):3043-3049.
    29. Tanikawa J, Yasukawa T, Enari M, Ogata K, Nishimura Y, Ishii S, Sarai A: Recognition of
    specific DNA sequences by the c-myb protooncogene product: role of three repeat units
    in the DNA-binding domain. Proc Natl Acad Sci U S A 1993, 90(20):9320-9324.
    30. Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer K-H: Viral myb oncogene encodes a
    sequence-specific DNA-binding activity. Nature 1988, 335(6193):835-837.
    31. Howe KM, Watson RJ: Nucleotide preferences in sequence-specific recognition of DNA by
    c-myb protein. Nucleic Acids Res 1991, 19(14):3913-3919.
    32. Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections.
    World Health Organization 2001.
    33. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark
    UC, Besteiro S et al: Draft genome sequence of the sexually transmitted pathogen
    Trichomonas vaginalis. Science 2007, 315(5809):207-212.
    34. Nielsen MH, Nielsen R: Electron microscopy of Trichomonas vaginalis Donne: interaction
    87

    with vaginal epithelium in human trichomoniasis. Acta Pathol Microbiol Scand [B] 1975,
    83(4):305-320.
    35. Schwebke JR, Burgess D: Trichomoniasis. Clin Microbiol Rev 2004, 17(4):794-803, table of
    contents.
    36. Moreno-Brito V, Yanez-Gomez C, Meza-Cervantez P, Avila-Gonzalez L, Rodriguez MA,
    Ortega-Lopez J, Gonzalez-Robles A, Arroyo R: A Trichomonas vaginalis 120 kDa protein
    with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin
    induced by iron. Cell Microbiol 2005, 7(2):245-258.
    37. Engbring JA, O'Brien JL, Alderete JF: Trichomonas vaginalis adhesin proteins display
    molecular mimicry to metabolic enzymes. Adv Exp Med Biol 1996, 408:207-223.
    38. Arroyo R, Engbring J, Alderete JF: Molecular basis of host epithelial cell recognition by
    Trichomonas vaginalis. Mol Microbiol 1992, 6(7):853-862.
    39. Mundodi V, Kucknoor AS, Klumpp DJ, Chang TH, Alderete JF: Silencing the ap65 gene
    reduces adherence to vaginal epithelial cells by Trichomonas vaginalis. Mol Microbiol 2004,
    53(4):1099-1108.
    40. Alderete JF, Garza GE: Identification and properties of Trichomonas vaginalis proteins
    involved in cytoadherence. . Infect Immun 1988, 56:28-33.
    41. Alderete JF, O'Brien JL, Arroyo R, Engbring JA, Musatovova O, Lopez O, Lauriano C, Nguyen
    J: Cloning and molecular characterization of two genes encoding adhesion proteins
    involved in Trichomonas vaginalis cytoadherence. Molecular Microbiology 1995, 17(1):69-83.
    88

    42. Arroyo R, J. E, Alderete JF: Molecular basis of host epithelial cell recognition by
    Trichomonas vaginalis. . Mol Microbiol 1992, 6:853-862.
    43. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH: Multifarious transcriptional regulation of
    adhesion protein gene ap65-1 by a novel Myb1 protein in the protozoan parasite
    Trichomonas vaginalis. Eukaryotic Cell 2006, 5(2):391-399.
    44. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH: Activation of multifarious transcription of an
    adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite
    Trichomonas vaginalis. Journal of Biological Chemistry 2007, 282(9):6716-6725.
    45. Ong SJ, Huang SC, Liu HW, Tai JH: Involvement of multiple DNA elements in
    iron-inducible transcription of the ap65-1 gene in the protozoan parasite Trichomonas
    vaginalis. Mol Microbiol 2004, 52(6):1721-1730.
    46. Tsai C-D, Liu H-W, Tai J-H: Characterization of an Iron-responsive Promoter in the
    Protozoan Pathogen Trichomonas vaginalis. Journal of Biological Chemistry 2002,
    277(7):5153-5162.
    47. Hsu H-M, Ong S-J, Lee M-C, Tai J-H: Transcriptional Regulation of an Iron-Inducible Gene
    by Differential and Alternate Promoter Entries of Multiple Myb Proteins in the
    Protozoan Parasite Trichomonas vaginalis. Eukaryotic Cell 2009, 8(3):362-372.
    48. Ong SJ, Hsu HM, Liu HM, Chu CH, Tai JH: Multifarious transcriptional regulation of
    adhesion protein gene ap65-1 by a novel Myb1 protein in the protozoan parasite
    Trichomonas vaginalis. Eukaryot Cell 2006, 5:391-399.
    49. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH: Activation of multifarious transcription of an
    89

    adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite
    Trichomonas vaginalis. J Biol Chem 2007, 282:6716-6725.
    50. Romero P, Obradovic Z, Dunker AK: Identifying disordered regions in proteins from amino
    acid sequences. Proc IEEE Internat'l Conf Neural Networks 1997, 1:90-95.
    51. Wishart DS, Sykes BD: Chemical shifts as a tool for structural determination. Methods
    Enzymol 1994, 239:363-392.
    52. Ayed A, Mulder FAA, Yi G-S, Lu Y, Kay LE, Arrowsmith CH: Latent and active p53 are
    identical in conformation. Nat Struct Mol Biol 2001, 8(9):756-760.
    53. Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura
    Y: Solution structure of a specific DNA complex of the Myb DNA-binding domain with
    cooperative recognition helices. Cell 1994, 79(4):639-648.
    54. Chang C-F, Chou H-T, Lin Y-J, Lee S-J, Chuang JL, Chuang DT, Huang T-h: Structure of
    the Subunit Binding Domain and Dynamics of the Di-domain Region from the Core of
    Human Branched Chain alpha-Ketoacid Dehydrogenase Complex. J Biol Chem 2006,
    281(38):28345-28353.
    55. Chang C-F, Chou H-T, Chuang JL, Chuang DT, Huang T-h: Solution Structure and
    Dynamics of the Lipoic Acid-bearing Domain of Human Mitochondrial Branched-chain
    alpha -Keto Acid Dehydrogenase Complex. J Biol Chem 2002, 277(18):15865-15873.
    56. Lefevre L-F, Dayie KT, Peng JW, Wagner G: Internal mobility in the partially folded DNA
    binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density
    functions. Biochemistry 1996, 35:2674-2686.
    90

    57. Bae S-H, Dyson HJ, Wright PE: Prediction of the Rotational Tumbling Time for Proteins
    with Disordered Segments. Journal of the American Chemical Society 2009, 131(19):6814-6821.
    58. Lou YC, Wei SY, Rajasekaran M, Chou CC, Hsu HM, Tai JH, Chen C: NMR structural analysis
    of DNA recognition by a novel Myb1 DNA-binding domain in the protozoan parasite
    Trichomonas vaginalis. Nucleic Acids Res 2009, 37(7):2381-2394.
    59. Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimoto S, Ametani Y,
    Hirata Z, Sarai A et al: Comparison of the free and DNA-complexed forms of the
    DNA-binding domain from c-Myb. Nat Struct Mol Biol 1995, 2(4):309-320.
    60. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI: PRIMUS - a Windows-PC
    based system for small-angle scattering data analysis. J Appl Cryst 2003, 36:1277-1282.
    61. Sarai A, Uedaira H, Morii H, Yasukawa T, Ogata K, Nishimura Y, Ishii S: Thermal stability
    of the DNA-binding domain of the Myb oncoprotein. Biochemistry 1993, 32(30):7759-7764.
    62. Dyson HJ, Wright PE: Intrinsically unstructured proteins and their functions. Nat Rev Mol
    Cell Biol 2005, 6(3):197-208.
    63. Tompa P: The interplay between structure and function in intrinsically unstructured
    proteins. FEBS Letters 2005, 579(15):3346-3354.
    64. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN: Flexible nets. The roles
    of intrinsic disorder in protein interaction networks. Febs J 2005, 272(20):5129 - 5148.
    65. Brown C, Campos-León K, Strickland M, Williams C, Fairweather V, Brady RL, Crump MP,
    Gaston K: Protein flexibility directs DNA recognition by the papillomavirus E2 proteins.
    91

    Nucleic Acids Research 2011, 39(7):2969-2980.
    66. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Shelby LB, Alsmark
    UCM, Besteiro S et al: Draft Genome Sequence of the Sexually Transmitted Pathogen
    Trichomonas vaginalis. Science 2007, 315(5809):207-212.
    67. van Dijk M, van Dijk AD, Hsu V, Boelens R, Bonvin AM: Information-driven protein-DNA
    docking using HADDOCK: it is a matter of flexibility. Nucleic Acids Res 2006, 34:3317-3325.
    68. Dominguez C, Boelens R, Bonvin AM: HADDOCK: a protein-protein docking approach
    based on biochemical or biophysical information. J Am Chem Soc 2003, 125:1731-1737.
    69. Bax A, Vuister GW, Grzesiek S, Delaglio F, Wang AC, Tschudin R, Zhu G: Measurement of
    homo- and heteronuclear J couplings from quantitative J correlation. In: Methods in
    Enzymology. Edited by Thomas L. James NJO, vol. Volume 239: Academic Press; 1994: 79-105.
    70. Darzynkiewicz Z, Carter SP, Mikulski SM, Ardelt WJ, Shogen K: Cytostatic and cytotoxic
    effects of Pannon (P-30 Protein), a novel anticancer agent. Cell and tissue kinetics 1988,
    21:169-182.
    71. Ardelt W, Mikulski S, Shogen K: Amino acid sequence of an anti-tumor protein from Rana
    pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem 1991,
    266(1):245-251.
    72. Riordan E, Bodek A, Breidenbach M, Dubin D, Elias J, Friedman J, Kendall H, Poucher J,
    Sogardttt M, Coward D: Ribonucleases, Structures and Functions: Academic Press, San
    Diego; 1997.
    92

    73. Wu Y, Mikulski S, Ardelt W, Rybak S, Youle R: A cytotoxic ribonuclease. Study of the
    mechanism of onconase cytotoxicity. Journal of Biological Chemistry 1993, 268(14):10686-10693.
    74. Boix E, Wu Y, Vasandani VM, Saxena SK, Ardelt W, Ladner J, Youle RJ: Role of the N
    terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor
    interaction and cytotoxicity. Journal of molecular biology 1996, 257(5):992-1007.
    75. Singh UP, Ardelt W, Saxena SK, Holloway DE, Vidunas E, Lee H-S, Saxena A, Shogen K,
    Acharya KR: Enzymatic and structural characterisation of amphinase, a novel cytotoxic
    ribonuclease from Rana pipiens oocytes. Journal of molecular biology 2007, 371(1):93-111.
    76. Saxena SK, Shogen K, Ardelt W: ONCONASE® and its therapeutic potential. Lab Medicine
    2003, 34(5):380-387.
    77. Leland PA, Schultz LW, Kim B-M, Raines RT: Ribonuclease A variants with potent cytotoxic
    activity. Proceedings of the National Academy of Sciences 1998, 95(18):10407-10412.
    78. Kelemen BR, Klink TA, Behike MA, Eubanks SR, Leland PA, Raines RT: Hypersensitive
    substrate for ribonucleases. Nucleic acids research 1999, 27(18):3696-3701.
    79. Zhao H, Ardelt B, Ardelt W, Shogen K, Darzynkiewicz Z: The cytotoxic ribonuclease
    onconase targets RNA interference (siRNA). Cell Cycle 2008, 7(20):3258-3261.
    80. Ardelt W, Shogen K, Darzynkiewicz Z: Onconase and amphinase, the antitumor
    ribonucleases from Rana pipiens oocytes. Current pharmaceutical biotechnology 2008, 9:215-225.
    81. Nasu M, Carbone M, Gaudino G, Ly BH, Bertino P, Shimizu D, Morris P, Pass HI, Yang H:
    Ranpirnase interferes with NF-κB pathway and MMP9 activity, inhibiting malignant
    93

    mesothelioma cell invasiveness and xenograft growth. Genes & cancer 2011, 2:576-584.
    82. Lin J-J, Newton DL, Mikulski SM, Kung H-F, Youle RJ, Rybak SM: Characterization of the
    mechanism of cellular and cell free protein synthesis inhibition by an anti-tumor
    ribonuclease. Biochemical and biophysical research communications 1994, 204(1):156-162.
    83. Costanzi J, Sidransky D, Navon A, Goldsweig H: Ribonucleases as a novel pro-apoptotic
    anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer
    investigation 2005, 23:643-650.
    84. Mikulski SM, Costanzi JJ, Vogelzang NJ, McCachren S, Taub RN, Chun H, Mittelman A,
    Panella T, Puccio C, Fine R: Phase II trial of a single weekly intravenous dose of ranpirnase
    in patients with unresectable malignant mesothelioma. Journal of Clinical Oncology 2002,
    20(1):274-281.
    85. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, Gatzemeier U,
    Boyer M, Emri S, Manegold C: Phase III study of pemetrexed in combination with cisplatin
    versus cisplatin alone in patients with malignant pleural mesothelioma. Journal of Clinical
    Oncology 2003, 21(14):2636-2644.
    86. Pavlakis N, Vogelzang NJ: Ranpirnase – an antitumour ribonuclease: its potential role in
    malignant mesothelioma. Expert Opinion on Biological Therapy 2006, 6(4):391-399.
    87. Waknine Y: New FDA Orphan Drugs: Gestiva, Onconase, Aerosolized Ciprofloxacin. In:
    Medscape. 2007.
    88. Leland PA, Staniszewski KE, Kim B-M, Raines RT: A synapomorphic disulfide bond is
    critical for the conformational stability and cytotoxicity of an amphibian ribonuclease.
    94

    FEBS letters 2000, 477(3):203-207.
    89. Lee JE, Raines RT: Contribution of active-site residues to the function of onconase, a
    ribonuclease with antitumoral activity. Biochemistry 2003, 42(39):11443-11450.
    90. Kim B-M, Kim H, Raines RT, Lee Y: Glycosylation of onconase increases its conformational
    stability and toxicity for cancer cells. Biochemical and Biophysical Research Communications 2004,
    315:976-983.
    91. Zhao HL, He Q, Xue C, Sun B, Yao XQ, Liu ZM: Secretory expression of glycosylated and
    aglycosylated mutein of onconase from Pichia pastoris using different secretion signals
    and their purification and characterization. FEMS yeast research 2009, 9:591-599.
    92. Mellquist J, Kasturi L, Spitalnik S, Shakin-Eshleman S: The amino acid following an
    asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation
    efficiency. Biochemistry 1998, 37(19):6833-6837.
    93. Kay LE, Nicholson, L., Delaglio, F., Bax, A., and Torchia, D.: Pulse sequences for removal
    of the effects of cross correlation between dipolar and chemical-shift anisotropy
    relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins.
    J Magn Resonance 1992, 97:39-375.
    94. Notomista E, Cafaro V, Fusiello R, Bracale A, D’Alessio G, Di Donato A: Effective expression
    and purification of recombinant onconase, an antitumor protein. FEBS letters 1999,
    463(3):211-215.
    95. Liao Y-D, Jeng J-C, Wang C-F, Wang S-C, Chang S-T: Removal of N-terminal methionine
    from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein
    95

    science : a publication of the Protein Society 2004, 13:1802-1810.
    96. Long D, Liu M, Yang D: Accurately probing slow motions on millisecond timescales with
    a robust NMR relaxation experiment. Journal of the American Chemical Society 2008,
    130(8):2432-2433.
    97. Tollinger M, Skrynnikov NR, Mulder FA, Forman-Kay JD, Kay LE: Slow dynamics in folded
    and unfolded states of an SH3 domain. Journal of the American Chemical Society 2001,
    123(46):11341-11352.
    98. Lee JE, Bae E, Bingman CA, Phillips GN, Raines RT: Structural Basis for Catalysis by
    Onconase. Journal of Molecular Biology 2008, 375:165-177.
    99. Kleckner IR, Foster MP: GUARDD: user-friendly MATLAB software for rigorous analysis
    of CPMG RD NMR data. Journal of biomolecular NMR 2012, 52:11-22.
    100. Berlow RB, Swain M, Dalal S, Sweasy JB, Loria JP: Substrate-dependent millisecond domain
    motions in DNA polymerase β. Journal of molecular biology 2012, 419(3):171-182.
    101. Fitzkee NC, Torchia DA, Bax A: Measuring rapid hydrogen exchange in the homodimeric
    36 kDa HIV‐1 integrase catalytic core domain. Protein Science 2011, 20(3):500-512.
    102. Sugase K, Konuma T, Lansing JC, Wright PE: Fast and accurate fitting of relaxation
    dispersion data using the flexible software package GLOVE. Journal of biomolecular NMR
    2013, 56(3):275-283.
    103. Vallurupalli P, Bouvignies G, Kay LE: Studying “invisible” excited protein states in slow
    exchange with a major state conformation. Journal of the American Chemical Society 2012,
    96

    134(19):8148-8161.
    104. Gardner KH, Kay LE: The use of 2 H, 13 C, 15 N multidimensional NMR to study the structure
    and dynamics of proteins. Annu Rev Biophys Biomol Struct 1998, 27:357--406
    105. Kanelis V, Forman-Kay JD, Kay LE: Multidimensional NMR Methods for Protein Structure
    Determination. IUBMB Life 2001, 52(6):291-302.
    106. Bax A: Multidimensional nuclear magnetic resonance methods for protein studies. Current
    Opinion in Structural Biology 1994, 4(5):738-744.
    107. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ: Protein NMR Spectroscopy - Principles
    and Practice. San Diego: Academic Press; 1996.
    108. Sattler M, Schleucher J, Griesinger C: Heteronuclear multidimensional NMR experiments
    for the structure determination of proteins in solution employing pulsed field gradients.
    Progress in Nuclear Magnetic Resonance Spectroscopy 1999, 34(2):93-158.
    109. Bax A, Vuister GW, Grzesiek S, Delaglio F, Wang AC, Tschudin R, Zhu G: [2] Measurement
    of homo- and heteronuclear J couplings from quantitative J correlation. In: Methods in
    Enzymology. Edited by Thomas L. James NJO, vol. Volume 239: Academic Press; 1994: 79-105.
    110. Lyons BA, Tashiro M, Cedergren L, Bilsson B, Montelione GT: An improved strategy for
    determining resonance assignments for isotopically enriched proteins and its application
    to an engineered domain of staphylococcal protein A. Biochemistry 1993, 32(31):7839-7845.
    111. Montelione GT, Lyons BA, Emerson SD, Tashiro M: An efficient triple resonance experiment
    using carbon-13 isotropic mixing for determining sequence-specific resonance
    97

    assignments of isotopically-enriched proteins. Journal of the American Chemical Society 1992,
    114(27):10974-10975.
    112. Logan TM, Olejniczak ET, Xu RX, Fesik SW: Side chain and backbone assignments in
    isotopically labeled proteins from two heteronuclear triple resonance experiments. FEBS
    Letters 1992, 314(3):413-418.
    113. Yamazaki T, Forman-Kay JD, Kay LE: Two-dimensional NMR experiments for correlating
    carbon-13.beta. and proton.delta./.epsilon. chemical shifts of aromatic residues in
    13C-labeled proteins via scalar couplings. Journal of the American Chemical Society 1993,
    115(23):11054-11055.
    114. Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes B, Wright PE, Wuthrich K:
    Recommendation of the presentation of NMR stuctures of proteins and nucleic acids.
    IUPAC-IUBMB-IUPAB Inter-Union Task Group on Standardization of Data Bases of
    Protein and Nucleic Acid Structure Determined by NMR Specroscopy. Eur J Biochem 1998,
    256:1-15.
    115. Small J: Sparky. Geriatr Nurs 1983, 4(3):166.
    116. Keller R, Wuthrich K: Computer-aided resonance assignment (CARA). Available from:
    http://wwwnmrch.
    117. Rückert M, Otting G: Alignment of Biological Macromolecules in Novel Nonionic Liquid
    Crystalline Media for NMR Experiments. Journal of the American Chemical Society 2000,
    122(32):7793-7797.
    118. Cordier F, Dingley AJ, Grzesiek S: A doublet-separated sensitivity-enhanced HSQC for the
    98

    determination of scalar and dipolar one-bond J-couplings. Journal of Biomolecular NMR 1999,
    13(2):175-180.
    119. Zweckstetter M: NMR: prediction of molecular alignment from structure using the PALES
    software. Nat Protocols 2008, 3(4):679-690.
    120. Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A: NMRPipe: A multidimensional
    spectral processing system based on UNIX pipes. Journal of Biomolecular NMR 1995, 6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE