簡易檢索 / 詳目顯示

研究生: 婁介嶺
Lou, Jie-Ling
論文名稱: 烷硫醇分子在矽(111)面上之自組裝特性研究
Formation and Characterization of Alkanethiol Self-Assembled Monolayers on Si (111) Surface
指導教授: 蘇雲良
Soo, Yun-Liang
陳家浩
Chen, Chia-Hao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 自組裝分子膜氫化矽(111)表面1-十二烷硫醇分子有機薄膜烷基硫醇
外文關鍵詞: Self-assembled monolayers (SAMs), Hydrogen-terminated Si(111) surfaces, 1-dodecanethiol (DDT), Organic thin film, Alkanethiolate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文探討藉由UV光催化硫烷類分子成長於氫化矽表面上之特性研究。實驗中選用1-十二硫醇(1-dodecanethiol,DDT)分子為研究基礎,進而成長良好的DDT/Si(111)薄膜。再透過水滴接觸角量測、高解析X光光電子能譜儀(HRXPS)、X光微結構吸收光譜(NEXAFS)、衰減式全反射紅外光吸收光譜技術的解析(ATR-FTIR),將對於DDT/Si(111)薄膜的表面濕潤特性、電子結構、分子排列、分子間偶極矩振動模式等,加以透徹分析與討論。
    實驗結果顯示,成長DDT/Si(111)薄膜呈現疏水性的101度,藉由HRXPS偵測薄膜表面碳1s、硫2p、矽2p、氧1s電子結構訊號,均反應出DDT分子以S-Si鍵結為成長基礎,並在無氧化層的影響下良好成長於氫化矽基材表面上。另外,由NEXAFS和ATR-FTIR解析DDT分子碳鍵為有序結構排列且站立角約56度,進而推估薄膜層厚度約15Å。綜合以上多方面的數據,都逐一顯示該參數成長之下,可成功製備良好的DDT/Si(111)薄膜。
    進一步探討DDT/Si(111)薄膜對於大氣環境的抵抗能力。從HRXPS分析矽2p與硫2p能譜顯示薄膜在大氣中存放一週後逐漸開始氧化,再利用KOH溶液清洗DDT/Si(111)薄膜,將驗證大氣使表面原有的破洞或殘缺、以及分子自然排列domain boundary之部分開始氧化。另一方面,又藉此分析氧含量的多寡,透過計算得到DDT覆蓋表面比例高達到約93%。總結以上各種的量測與試驗,確認成功的製備出以S-Si鍵結作為基礎成長的單分子層系統,對於能在乾淨除氧的矽基材上之應用更加推廣及發展。


    In this thesis, we have studied the formation of 1-dodecanethiol (DDT) self-assembled monolayers (SAMs) grown on hydrogen-terminated Si(111) surfaces. The surface wettability, electronic properties, molecular orientation, and molecular oriented transition dipole moment of the DDT/Si(111) film were studied by water contact angle, high-resolution X-ray photoelectron spectroscopy (HRXPS), polarized near-edge X-ray absorption fine structure (NEXAFS), and attenuated total reflection fourier transform infrared(ATR-FTIR).
    The 101° water contact angle and HRXPS measurement indicate the DDT is almost fully covered on Si forming a high quality and densely peacked methyl-terminates surface. Furthermore, a combination of NEXAFS and ATR-FTIR measurements revealed a structure of ordered alkyl chains tilted 33.4° related to the surface normal and calculated film thickness of 15 Å.
    To investigate the durability of the monolayer, the fresh DDT/Si(111) samples were kept in atmospheric condition from one day up to a month. From Si 2p and S 2p spectra, a slight increase of the oxide component was observed after a week. Moreover, by immersing sample into potassium hydroxide solution, we concluded that the oxidation of DDT/Si(111) is starting from the defect sites and domain boundary of the SAMs.

    摘要 i 誌謝 iii 目錄 vi 圖目錄 v 表目錄 ix 第一章、前言 1 第二章、文獻回顧與實驗動機 4 2-1 自組裝分子膜(Self-Assembled Monolayers) 4 2-2 SAMs與氫化矽表面之研究與探討 6 2-2-1 氫化矽表面的製備 7 2-2-2 SAMs成長於氫化矽表面之研究 7 2-3研究動機與目的 12 第三章、儀器簡介 17 3-1 同步輻射(synchrotron radiation)原理 17 3-2 超高真空系統 19 3-3 X光光電子能譜術(X-ray Photoemission Spectroscopy,XPS)介紹 20 3-3-1 光電子發射能譜 20 3-3-2 XPS基本原理介紹 20 3-3-3 傳統X光源與同步輻射光源的比較 21 3-3-4 儀器能量校準 22 3-3-5 能譜分析 24 3-4 近緣X光吸收細微結構光譜 (Near Edge X-ray Absorption Fine Structure, NEXAFS)原理 26 3-5 霍式紅外光譜儀(Fourier Transfrom Infrared Spectrometer,FTIR)介紹 28 第四章、實驗步驟與方式 31 4-1 實驗藥品 31 4-2 實驗步驟 33 4-3 實驗方式 34 4-3-1 真空系統 34 4-3-2 XPS數據處理 35 4-3-3 NEXAFS量測與分析 36 4-3-4 接觸角量測 37 4-2-5 FTIR-ATR量測 37 第五章、實驗結果與討論 38 5-1 矽基材前製處理 38 5-1-1 矽基材清洗 38 5-1-2 氫化作用 40 5-2 DDT基本性質探討 45 5-2-1 UV光作用之影響 45 5-2-2 DDT成長參數探討 47 5-2-3 DDT成長於氫化矽表面研究 54 5-2-4 變能量解析硫元素 58 5-2-5 分子與表面鍵結率計算 61 5-2-6 DDT/Si(111)薄膜排列角度與厚度 62 5-2-7 表面分子振動模式 66 5-3 DDT/Si(111)相關研究 67 5-3-1 DDT/Si(111)抗氧化測試 68 5-3-2 檢驗DDT/Si(111)薄膜相關覆蓋問題 71 5-3-3 DDT分子覆蓋計算 75 第六章、結論 77 參考文獻 79

    第一章
    [1.1] J. M. Buriak, Chem. Rev., 2002, 102, 1272.
    [1.2] A. Kurmar, H. A. Biebuyck, and G. M. Whitesides, Langmuir, 1994, 10, 1498.
    [1.3] A. C. Templeton et al., Acc. Chem. Res., 2000, 33, 27.
    [1.4] J. C. Love et al., Chem. Rev., 2005, 105, 1103.
    [1.5] G. M. Whitesides and Y. Xia, Angew. Chem. Int. Ed., 1998, 37, 550.
    第二章
    [2.1] W. C. Bigelow et al., J. Colloid Interface Sci., 1946, 1, 513.
    [2.2] G. M. Whitesides and L. Strong, Langmuir, 1988, 4, 546.
    [2.3] J. M. White and W. P. Fitts, Langmuir, 2002, 18, 1516.
    [2.4] A. Ulman, Chem. Rev., 1996, 96, 1533.
    [2.5] I. H. Campbell et al., Phys. Rev. B, 1996, 54, 14321.
    [2.6] L. Segve et al., Phys. Rev. B, 2006, 74, 165323.
    [2.7] D. K. Aswal et al., Analytica Chimica Acta, 2006, 568, 84.
    [2.8] S. Maldonado et al., J. Phys. Chem. C, 2007, 111, 17690.
    [2.9] E. D. Chidsey and M. R. Linford et al., J. Am. Chem. Soc., 1995, 117, 3145.
    [2.10] G. S. Higasji et al., Appl. Phys. Lett., 1990, 56, 156.
    [2.11] R. Boukherroub, and D. D. M. Wayner, Langmuir, 1995, 15, 3831.
    [2.12] J. M. Buriak, Chem. Commun., 1999, 1051.
    [2.13] J. M. Buriak and M. P. Stewart, J. Am. Chem. Soc., 2001, 123, 7821.
    [2.14] A. Vilan et al., Adv. Mater., 2010, 22, 140.
    [2.15] C. Miramond et al., Appl. Phys. Lett., 2001, 78, 1288.
    [2.16] S. R. Puniredd, H. Haick and O. Aeead, J. Am. Chem. Soc., 2008, 130, 13727.
    [2.17] L. H. Yu et al., J. Phys.Cond. Mater., 2008, 20, 374114.
    [2.18] N. G. Hackett et al., J. Am. Chem. Soc., 2008, 130, 4259.
    [2.19] E. J. Faber et al., Chem .Phys. Chem., 2005, 6, 2153.
    [2.20] H. Sano et al., Jpn. J. Appl. Phys., 2010, 49, 01AE09.
    [2.21] M. R. Kosuri et al., Surface Science, 2005, 596, 21.
    [2.22] C. L. McGuiness et al., J. Am. Chem. Soc., 2006, 128, 5231.
    第三章
    [3.1] H. Winick, S. Doniach, Synchrotron Radiation Research, Plenum, New York, 1980.
    [3.2] http://www.nsrrc.org.tw/
    [3.3] Vickerman, J.C. “Surface Analysis-The Principal Techniques”, John Wiley and Sons,
    New York, 1997.
    [3.4] R. Eisberg and R. Resnick, Quantum Physics of Atom, Molecules, Solids, Nuclei, and
    Particles, 2nd edition (John Wiley, NY, 1985).
    [3.5] 洪一弘 等人, 同步輻射研究中心簡訊, 1999, 43,17.
    [3.6] 王兆恩 及 張正祥, 同步輻射研究中心簡訊, 1997, 37,12.
    [3.7] 崔古鼎, 物理雙月刊, 1998, 20, 607.
    [3.8] 汪建民, 材料分析, 中國材料科學學會, 1998.
    [3.9] E. Hahn, Adv. Electronic and Electron Physics, 1989, 75, 233.
    [3.10] J. Stöhr, NEXAFS Spectroscopy, Springer, Heidelberg, 1992.
    [3.11] Tamm L.K. and Tatulian S.A. Infrared spectroscopy of proteins and peptides in lipid
    bilayers. Quart. Rev. Biophy. 1997, 30, 365-429.
    [3.12] Goormaghtigh, E., Raussens, V. and Ruysschaert, J.-M. Attenuated total reflection
    infrared spectroscopy of proteins and lipids in biological membranes.
    Biochim.Biophys. Acta. 1999, 1422, 105-185
    [3.13] N. J. Harrick, Internal Reflection Spectroscopy, Wiley, New York, 1967.
    第四章
    [4.1] D. A. Wells et al., J. Opt. Soc. Am., 1993, 23, 105.
    [4.2] H. Sano et al., Jpn. J. Appl. Phys., 2008, 47, 5659.
    [4.3] Jill Chastain, Handbook of X-Ray photoelectron Spectroscopy Perkin-Elmer Corporation, 1992.
    [4.4] B. Watts, L. Thomsen, P.C. Dastoor, Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 105.
    第五章
    [5.1] J. B. Schlenoff, M. Li, and H. Ly, J. Am. Chem. Soc., 1995, 117, 12528.
    [5.2] F. J. Himpsel et al., Phys. Rev. B, 1988, 38, 6084.
    [5.3] H. Asanuma et al., Langmuir, 2005, 21, 5013.
    [5.4] J. Hattori et al., Appl. Surf. Scie., 1996, 104/105, 323.
    [5.5] J. Terry et al., J. Appl. Phys., 1999, 85, 213.
    [5.6] L. J. Webb et al., J. Phys. Chem. B, 2005, 109, 3930-3937.
    [5.7] Y. Paska and H. Haick, J. Phys. Chem. C, 2009, 113, 1993-1997.
    [5.8] S. -K. Yang et al., J. Appl. Phys., 1994, 76, 4107.
    [5.9] G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers (John Wiley,
    NY, 1992).
    [5.10] K. Heister et al., J. Phys. Chem. B, 2001, 105, 4058.
    [5.11] T. Ishida and N. Choi et al., Langmuir, 1999, 15, 6799.
    [5.12] A. Lehner et al., J. Appl. Phys., 2003, 94, 2290.
    [5.13] P. Ardalan, C. B. Musgrave and S. F. Bent, Langmuir, 2009, 25, 2013.
    [5.14] T. Ishida and S. Tsundea et al., Langmuir, 1998, 14, 2092.
    [5.15] Y. H. Lai et al., Surface Science, 2002, 519, 150.
    [5.16] K. Hirose et al., Surf. Scie., 2007, 82, 3-54.
    [5.17] L. Scheres, A. Arafat and H. Zuilhof, Langmuir, 2007, 23, 8343.
    [5.18] G. Gonella et al., Surface Science, 2004, 566, 638.
    [5.19] J. Terry et al., Nucl. Instr. and Meth. in Phys. Res. B, 1997, 133, 94-101.
    [5.20] NIST Electron Inelastic-Mean-Free-Path Database: Version 1.1
    [5.21] J.-J Yeh, Atomic calculation of photoionization cross-sections and asymmetry
    parameter : Gordon and Brecach science, 1993.
    [5.22] J. Fu and S. G. Urquhart, J. Phys. Chem. A, 2005, 109, 11724.
    [5.23] G. Hähner, Chem. Soc. Rev., 2006, 35, 1244.
    [5.24] M. Zharnikov et al., Phys. Chem. Chem. Phys., 1999, 1, 3163.
    [5.25] C. Mainka et al., Surf. Scie., 1995, 341, L1055-L1060.
    [5.26] W. S. Hu, Y. U. Tao, Y. J. Hsu, D. H. Wei, and Y. S. Wu, Langmuir, 2005, 21,
    2260-2266.
    [5.27] S. M. Han et al., J. Am. Chem. Soc., 2001, 123, 2422.
    [5.28] Egon Wiberg, Nils Wiberg, and A. Holleman, Inorganic chemistry, Germany, 2001.
    [5.29] D. Fischer et al., J. Vac. Sci. Technol. A, 1997, 15, 4.
    [5.30] A. Shaporenko et al., J. Phys. Chem. B, 2005, 109, 3898.
    [5.31] H. Rieley and G. K. Kendall, Langmuir, 1999, 15, 8867.
    [5.32] Y. Pei et al., Langmuir, 2003, 19, 7652.
    [5.33] A. N. Parikh and D. L. Allara, J. Chem. Phys., 1992, 96, 927.
    [5.34] T. M. Willey et al., Surface Science, 2005, 576, 188.
    [5.35] P. Wagner et al., Journal of Structural Biology, 1997, 119, 189.
    [5.36] J. C. Love et al., Chem. Rev., 2005, 105, 1103.
    [5.37] P. Allongue et al., Journal of Electroanalytical Chemistry, 2003, 550/551, 161.
    [5.38] H. J. Lewerenz et al., Electrochimica Acta, 2000, 45, 4615-4627.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE