研究生: |
黃郁傑 Huang, Yu-Jie |
---|---|
論文名稱: |
銅、鉬共摻雜二氧化鈦之製備與分析 Preparation and characterization of Molybdenum and Copper co-doped Titanium Oxide |
指導教授: |
蘇雲良
Soo, Yun-Liang |
口試委員: |
詹丁山
Chan, Ting-Shan 翁世璋 Weng, Shih-Chang 張石麟 Chang, Shih-Lin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 45 |
中文關鍵詞: | 溶膠凝膠法 、二氧化鈦 、共摻雜 、能隙 |
外文關鍵詞: | sol-gel method, titanium dioxide, co-doped, band gap |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用溶膠凝膠法將銅、鉬共摻雜至二氧化鈦中,接著透過攝氏500度且在氧氣氣氛下鍛燒退火,由無定形的二氧化鈦轉變成銳鈦礦結構,透過溶膠凝膠法的摻雜方式,可以實現均勻且高濃度的摻雜,為了更有效的縮短電子能隙,我們得了解摻雜濃度與電子能隙的變化情形,再透過結構量測,確保前驅物摻入二氧化鈦,且沒有產生其他氧化物,其中拉曼光譜展示了銳鈦礦的主體結構且沒有其他氧化物的生成的訊號;XRD確定樣品為銳鈦礦晶相、透過得到的繞射峰用sherrer equtaion計算粒徑大小;吸收光譜辨別銅、鉬是否取代鈦且檢視樣品的短程有序結構;紫外光可見光吸收光譜量測樣品對可見光的吸收度和能隙大小。結果指出摻雜後的銅,探討銅、鉬共摻雜二氧化鈦,雜質能帶(impurity band)對結構的關係,同時比較銅、鉬共摻雜和各別摻雜的情況,在共摻雜的情況下,會比單一摻雜更利於降低能隙,增加光催化效率。
In this thesis, copper and molybdenum co-doped titanium dioxide were synthesized by sol-gel method and then annealed in oxygen gas at an elevated temperature of 5000C. Sol-gel method can achieve uniform doping with high dopant concentrations. After thermal annealing, the crystal structure of the titanium dioxide sample changes from amorphous to anatase. To effectively decrease the energy band gap, knowledge on the relation between precursor concentration and band gap is of central importance. Structural information of the samples is also necessary for understanding the observed physical properties of the materials. The structures of samples were investigated by using X-ray diffraction (XRD) and Raman spectroscopy. Furthermore, X-ray absorption spectroscopy (XAS) provides short-range order information of the samples. And, UV-vis spectroscopy can be used to reveal light absorption properties and band gap values. Our experimental results clearly demonstrated that (Cu,Mo) co-doping is more effective for band gap narrowing in TiO2 than doping of Cu or Mo alone.
[1-1] David O. Scanlon, Charles W. Dunnill, John Buckeridge, Stephen A. Shevlin1,Andrew J. Logsdail, Scott M.Woodley, C. Richard A. Catlow, Michael. J. Powell,Robert G. Palgrave, Ivan P. Parkin, GraemeW.Watson, ThomasW. Keal, Paul Sherwood,AronWalsh and Alexey A. Sokol11,Band alignment of rutile and anatase TiO2,Nat. Mater. 12 (2013) , 798–801.
[1-2] Siva Nagi Reddy Inturi, Thirupathi Boningari , Makram Suidan, Panagiotis G.Smirniotis,Visible-light-induced photodegradation of gas phase acetonitrile usingaerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2,Appl. Catal. B-Environ. 144 (2014) , 333–342.
[1-3] Mariusz Szkoda , Katarzyna Siuzdak , Anna Lisowska-Oleksiak ,Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water,Physica E 84 (2016) , 141–145.
[1-4] Matiullah Khan, Zeng Yi, U Fawad, Wazir Muhammad, Abdul Niaz, Muhammad Iqbal Zaman and Asad Ullah, Enhancing the photoactivity of TiO2 by codoping with silver and molybdenum: the effect of dopant concentration on the photoelectrochemical properties, Mater. Res. Express 4 (2017),045023.
[1-5] C. Parks Cheney, P. Vilmercati, E. W. Martin, M. Chiodi, L. Gavioli,M. Regmi, G. Eres, T. A. Callcott, H.H. Weitering, and N. Mannella,,Origins of Electronic Band Gap Reduction in Cr /N Codoped TiO2,Phys.Rev.Lett. 112 (2014),036404.
[2-1] Hyun Chul Choi, Young Mee Jung, Seung Bin Kim,Size effects in the Raman spectra of TiO2 nanoparticles,Vib.Spectroscopy 37 (2005) ,33–38.
[2-2]Y. L. Soo, G. Kioseoglou, S. Kim, Y. H. Kao, P. Sujatha Devi, JohnParise, R. J. Gambino, and P. I. Gouma, Local environment surrounding magnetic impurity atoms in a structural phase transition of Co-doped TiO2 nanocrystal ferromagnetic semiconductors, Appl.Phys.
Lett. 81 (2002) , 655-657.
[2-3] Quang Duc Truong , Thi Hang Le, Jen-Yu Liu, Cheng-Chi Chung, Yong-Chien Ling,Synthesis of TiO2 nanoparticles using novel titanium oxalate complex towards visible light-driven photocatalytic reduction of CO2 to CH3OH,Applied Catalysis A: General,437–438 (2012) , 28–35.
[2-4]Yu-Te Liao, Yu-Yuan Huang,Hao Ming Chen, Mesoporous TiO2 Embedded with a Uniform Distribution of CuO Exhibit Enhanced Charge Separation and Photocatalytic Efficiency,ACS Appl. Mater. Interfaces 9 (2017), 42425−42429.
[2-5] Sining Yuna, Jilian Nei Freitasb, Ana F. Nogueirac, Yanmin Wangd,Shahzada Ahmade, Zhong-Sheng Wangf,Dye-sensitized solar cells employing polymers,Prog. Polym. Sci. 59 (2016) , 1–40.
[2-6] Dorian A. H. Hanaor, Charles C. Sorrell,Review of the anatase to rutile phase transformation,J.Mater.Sci. 46 (2011) , 855–874.
[2-7] U.G. Akpan, B.H. Hameed,Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts, J. Hazard. Mater. 170 (2009) , 520–529.
[3-1] Masakazu Anpo, Takahito Shima, Sukeya Kodama, and Yutaka Kubokawa, Photocatalytic Hydrogenation of CH3CCH with H20 on Small-Particle Ti02: Size Quantization Effects and Reaction Intermediates ,J. Phys. Chem. (91) 1987 ,4305-4310
[3-2] Ahmad Monshi , Mohammad Reza Foroughi , Mohammad Reza Monshi ,
Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD,WJNSE, (2) 2012,154-160
[3-3]Paolo Fornasini,Introduction to X-Ray Absorption Spectroscopy,Springer-Verlag Berlin Heidelberg 2015.
[4-1]Funda SAYILKAN, Meltem ASILTURK, Hikmet SAYILKAN,Yunus ONAL, Murat AKARSU and Ertugrul ARPAC,Characterization of TiO2 Synthesized in Alcohol by aSol-Gel Process: The E_ects of AnnealingTemperature and Acid Catalyst,Turk. J. Chem. 29 (2005) ,697 - 706.
[5-1] Junqing Yan, Guangjun Wu, Naijia Guan, Landong Li Zhuoxin Li andXingzhong Cao,Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus
rutile,Phys. Chem. Chem. Phys., 15 (2013),10978—10988.
[5-2] T. Ressler,R. E. Jentoft, J. Wienold, M. M. Gu1nter, and O. Timpe,In Situ XAS and XRD Studies on the Formation of Mo Suboxides during Reduction of MoO3,J. Phys. Chem. B 104 (2000),6360-6370.
[5-3] R. Manimaran, K. Palaniradja, N. Alagumurthi, S. Sendhilnathan, J. Hussain,Preparation and characterization of copper oxide nanofluid for heat transfer applications ,Appl.Nanosci. 4 (2014),163–167.
[5-4] Y J Feng, C Wang, W R Cheng, J H Huang, T X Zhao, Q H Liu, Z Xie, Z Y Pan,and S Q Wei,Local structure of Mo-doped TiO2 photocatalysts investigated by X-ray absorption fine structure,Journal of Physics: Conference Series 430 (2013),012090.
[5-5] Xiaohui Yu, Tingjun Hou, Xuhui Sun, and Youyong Li,The Influence of Defects on Mo-Doped TiO2 by First-Principles Studies,Chem. Phys. Chem. 13 (2012),1514–1521.
[5-6] Augusta Bianca Ene, Matthias Bauer, Tanja Archipov and Emil Roduner,Adsorption of oxygen on copper in Cu/HZSM5 zeolites,Phys. Chem. Chem. Phys., 12 (2010),6520–6531.
[5-7] Hyun Chul Choi, Young Mee Jung, Seung Bin Kim,Size effects in the Raman spectra of TiO2 nanoparticles,Vib. Spectroscopy, 37 (2005),33–38.
[5-8] J, Chrzanowski and J.C. Irwin Physics Department Simon Fraser University Burnaby, B.C. Canada V5A IS6,RAMAN SCATTERING FROM CUPRIC OXIDE, Solid State Communications, 70 (1989),ll-14.
[5-9] S. H. Elder, F. M. Cot, Y. Su, S. M. Heald, A. M. Tyryshkin, M. K. Bowman, Y. Gao, A. G. Joly, M. L. Balmer, Ana C. Kolwaite, K. A. Magrini,| and D. M. Blake|,The Discovery and Study of Nanocrystalline TiO2-(MoO3),Core-Shell Materials,J. Am. Chem. Soc. 122 (2000),5138-5146.
[5-10] Osmín Avilés-García , Jaime Espino-Valencia , Rubí Romero , José Luis Rico-Cerda ,Manuel Arroyo-Albiter , Reyna Natividad,W and Mo doped TiO2: Synthesis, characterization and photocatalytic activity,Fuel 198 (2017),31–41.