研究生: |
許庭嘉 Ting-Jia Shiu |
---|---|
論文名稱: |
記憶突變果蠅-Mampus之影像和記憶行為分析 Genetic Anatomy of a Memory Mutant, Mampus |
指導教授: |
江安世
Ann-Shyn Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 抗昏迷記憶 、學習與記憶 、果蠅學習 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
果蠅具有五種記憶層次,分別是學習、短期記憶、中期記憶、抗昏迷記憶及長期記憶。記憶可以隨著時間由較不穩定的形式轉變到可抗其他外在干擾並可長時間維持的記憶。抗昏迷記憶就是這種記憶之ㄧ,其是即使經過冰昏但仍存在的記憶。而名為蘿蔔(radish)的突變株是第一個被發現喪失此抗昏迷記憶的果蠅。目前對此抗昏迷記憶的分子機制、基因所屬或細胞中的化學機制的研究仍還有許多未知。再此篇研究我們發現了另一個由跳躍子插在escargo這個基因上游所導致的突變株—Mampus,同樣參與這種抗昏迷記憶的形成。另外我們也篩選到其他三個突變株和Mampus一樣在蛹的中期發展完成並同樣在果蠅腦的前側方表現兩對成雙的神經細胞。同時我們利用FLIP-OUT的技術使Mampus一次只表現出一顆神經細胞進而研究神經伸展方式,我發現Mampus的神經細胞在腦中會先將神經纖維伸展到其細胞同側的後上腦最後伸到神經細胞異側的後上腦。而其表現的四顆神經細胞可分類為兩種不同的型態,第一類的神經細胞會在同側的後上腦有較多的神經纖維,第二類則是在異側的後上腦有較多的神經纖維表現。利用專一在神經樹突及軸突表現的工具我發現Mampus的樹突可能是位於腦中的觸角區而軸突位在後上腦。同時這兩對神經細胞的Gal4活性會被Cha-Gal80抑制所以可能是利用乙烯膽鹼作為其神經傳導物質。當利用神經傳導抑制的基因表現在Mampus的神經細胞來抑制此神經的功能時,發現會干擾其抗昏迷記憶的形成。同時我也利用一種導致細胞死亡的基因shibire在Mampus神經細胞表現時也發現其抗昏迷記憶喪失的現象。未來為了更進一步研究此記憶,我也同時篩選到兩個表現在Mampus神經的突變株分別是8165和6356並可利用此兩個突變株深入研究此記憶型式,此兩個突變是利用engrailed基因的啟動子插入所產生的。根據之前的研究及以上種種的結果皆顯示抗昏迷記憶的形成或讀取皆需要蘿蔔(radish)和Mampus這兩個突變株的基因及其神經細胞的操控。
There are five distinct memory phases in Drosophila, in terms of temporal sustains: Learning, short-term memory (STM), middle-term memory (MTM), (anesthesia resistant memory) ARM and (long-term memory) LTM. With time the memories can be transferred from labile into long-lasting form that are resistant to mental interruptions. ARM is the one that can resist the anesthesia agent -- cold shock. A point mutation fly, radish is the only reported case which has defective ARM. Little is known about the molecular, genetic, or cellular pathways underlying ARM. Here, we report another mutant, Mampus, involved in ARM formation. The Mampus mutant has a GAL4 insertion at upstream of escargot (esg). We have obtained or collected three Mampus alleles with similar expression patterns in two pairs of anterior lateral neurons since mid-pupa stage. Using genetic FLIP-out technique to visualize one neuron at a time, I found that both Mampus neurons project fibers first to the antennal lobe, and then extend proteriorly to the ipsilateral posterior superior protocerebrum (PSP) and finally terminate at contralateral PSP. The two neurons are however different in morphology. One has more fibers at the ipsilateral PSP while the other has more fibers at the contralateral PSP. Using specific polarity reporters, I found that Mampus fibers at antennal lobe are dendrites and at PSP are axons. The two pairs of Mampus neurons are likely cholinergic since their GAL4 expression is inhibited by the expression of Cha-GAL80. When blocking neurotransmitter release from Mampus neurons with shibirets, ARM is disrupted. An independent manipulation by the ablation of Mampus with reaper toxin also disrupts ARM. For a more thorough behavior assay in the future, I have also obtained two promoter-driven lines of engrailed (6356 and 8165) that also expresses in the Mampus neurons. These results together with previous study suggest that formation or retrieval of ARM requires neurons expressing genes disrupted in radish and Mampus mutants in the fly brain.
1. Jefferis, G.S., Marin, E.C., Watts, R.J., and Luo, L. (2002). Development of neuronal connectivity in Drosophila antennal lobes and mushroom bodies. Curr Opin Neurobiol 12, 80-86.
2. Stocker, R.F. (1994). The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275, 3-26.
3. Dubnau, J., and Tully, T. (1998). Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21, 407-444.
4. Perazzona, B., Isabel, G., Preat, T., and Davis, R.L. (2004). The role of cAMP response element-binding protein in Drosophila long-term memory. J Neurosci 24, 8823-8828.
5. Yin, J.C., Wallach, J.S., Del Vecchio, M., Wilder, E.L., Zhou, H., Quinn, W.G., and Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49-58.
6. Folkers, E., Drain, P., and Quinn, W.G. (1993). Radish, a Drosophila mutant deficient in consolidated memory. Proc Natl Acad Sci U S A 90, 8123-8127.
7. Quinn, W.G., and Dudai, Y. (1976). Memory phases in Drosophila. Nature 262, 576-577.
8. Drier, E.A., Tello, M.K., Cowan, M., Wu, P., Blace, N., Sacktor, T.C., and Yin, J.C. (2002). Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nat Neurosci 5, 316-324.
9. Micheau, J., and Riedel, G. (1999). Protein kinases: which one is the memory molecule? Cell Mol Life Sci 55, 534-548.
10. Kane, N.S., Robichon, A., Dickinson, J.A., and Greenspan, R.J. (1997). Learning without performance in PKC-deficient Drosophila. Neuron 18, 307-314.
11. Grunbaum, L., and Muller, U. (1998). Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J Neurosci 18, 4384-4392.
12. Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell 79, 35-47.
13. Tully, T., Cambiazo, V., and Kruse, L. (1994). Memory through metamorphosis in normal and mutant Drosophila. J Neurosci 14, 68-74.
14. Tully, T., and Gold, D. (1993). Differential effects of dunce mutations on associative learning and memory in Drosophila. J Neurogenet 9, 55-71.
15. Dura, J.M., Preat, T., and Tully, T. (1993). Identification of linotte, a new gene affecting learning and memory in Drosophila melanogaster. J Neurogenet 9, 1-14.
16. DeZazzo, J., and Tully, T. (1995). Dissection of memory formation: from behavioral pharmacology to molecular genetics. Trends Neurosci 18, 212-218.
17. Xia, S.Z., Feng, C.H., and Guo, A.K. (1999). Temporary amnesia induced by cold anesthesia and hypoxia in Drosophila. Physiol Behav 65, 617-623.
18. Yamada, A., Sekiguchi, T., Suzuki, H., and Mizukami, A. (1992). Behavioral analysis of internal memory states using cooling-induced retrograde amnesia in Limax flavus. J Neurosci 12, 729-735.
19. Allweis, C. (1991). The congruity of rat and chick multiphasic memory-consolidation models. In Neural and Behavioural Plasticity, R.J. Andrew, ed. (New York: Oxford University Press). pp. 370?93.
20. Galluscio, E.H. (1971). Retrograde amnesia induced by electroconvulsive shock and carbon dioxide anesthesia in rats: an attempt to stimulate recovery. J Comp Physiol Psychol 75, 136-140.
21. Weissman, A. (1967). Drugs and retrograde amnesia. Int Rev Neurobiol 10, 167-198.
22. Dubnau, J., Chiang, A.S., Grady, L., Barditch, J., Gossweiler, S., McNeil, J., Smith, P., Buldoc, F., Scott, R., Certa, U., Broger, C., and Tully, T. (2003). The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13, 286-296.
23. Ghabrial, A., Luschnig, S., Metzstein, M.M., and Krasnow, M.A. (2003). Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 19, 623-647.
24. Yagi, Y., Suzuki, T., and Hayashi, S. (1998). Interaction between Drosophila EGF receptor and vnd determines three dorsoventral domains of the neuroectoderm. Development 125, 3625-3633.
25. Hochheimer, A., and Tjian, R. (2003). Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev 17, 1309-1320.
26. Fuse, N., Matakatsu, H., Taniguchi, M., and Hayashi, S. (1999). Snail-type zinc finger proteins prevent neurogenesis in Scutoid and transgenic animals of Drosophila. Dev Genes Evol 209, 573-580.
27. Chao, S., and Nagoshi, R.N. (1999). Induction of apoptosis in the germline and follicle layer of Drosophila egg chambers. Mech Dev 88, 159-172.
28. Wing, J., Zhou, L., Schwartz, L., and Nambu, J. (1999). Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ 6, 212-213.
29. Wing, J.P., Zhou, L., Schwartz, L.M., and Nambu, J.R. (1998). Distinct cell killing properties of the Drosophila reaper, head involution defective, and grim genes. Cell Death Differ 5, 930-939.
30. Keene, A.C., Stratmann, M., Keller, A., Perrat, P.N., Vosshall, L.B., and Waddell, S. (2004). Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44, 521-533.
31. Tully, T., and Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157, 263-277.
32. Wong, A.M., Wang, J.W., and Axel, R. (2002). Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229-241.
33. Chiang, A.S., Liu, Y.C., Chiu, S.L., Hu, S.H., Huang, C.Y., and Hsieh, C.H. (2001). Three-dimensional mapping of brain neuropils in the cockroach, Diploptera punctata. J Comp Neurol 440, 1-11.
34. Harrison, D.A., Binari, R., Nahreini, T.S., Gilman, M., and Perrimon, N. (1995). Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. Embo J 14, 2857-2865.
35. Duffy, J.B. (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1-15.
36. Littleton, J.T., Upton, L., and Kania, A. (1995). Immunocytochemical analysis of axonal outgrowth in synaptotagmin mutations. J Neurochem 65, 32-40.
37. Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., Dixon, J.E., and Zipursky, S.L. (2000). Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671-684.
38. Park, G.A., Pappas, B.A., Murtha, S.M., and Ally, A. (1992). Enriched environment primes forebrain choline acetyltransferase activity to respond to learning experience. Neurosci Lett 143, 259-262.
39. Hironaka, N., Tanaka, K., Izaki, Y., Hori, K., and Nomura, M. (2001). Memory-related acetylcholine efflux from rat prefrontal cortex and hippocampus: a microdialysis study. Brain Res 901, 143-150.
40. Dickinson-Anson, H., Winkler, J., Fisher, L.J., Song, H.J., Poo, M., and Gage, F.H. (2003). Acetylcholine-secreting cells improve age-induced memory deficits. Mol Ther 8, 51-61.
41. Lee, D., and O'Dowd, D.K. (2000). cAMP-dependent plasticity at excitatory cholinergic synapses in Drosophila neurons: alterations in the memory mutant dunce. J Neurosci 20, 2104-2111.
42. Kitamoto, T., and Salvaterra, P.M. (1995). A POU homeo domain protein related to dPOU-19/pdm-1 binds to the regulatory DNA necessary for vital expression of the Drosophila choline acetyltransferase gene. J Neurosci 15, 3509-3518.
43. Kitamoto, T. (2002). Conditional disruption of synaptic transmission induces male-male courtship behavior in Drosophila. Proc Natl Acad Sci U S A 99, 13232-13237.
44. Ganeshina, O., and Menzel, R. (2001). GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J Comp Neurol 437, 335-349.
45. Zeidler, M.P., Tan, C., Bellaiche, Y., Cherry, S., Hader, S., Gayko, U., and Perrimon, N. (2004). Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotechnol 22, 871-876.
46. Stocker, R.F. (2001). Drosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression, and central connectivity. Microsc Res Tech 55, 284-296.
47. Jefferis, G.S., Marin, E.C., Stocker, R.F., and Luo, L. (2001). Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204-208.
48. Wang, Y., Chiang, A.S., Xia, S., Kitamoto, T., Tully, T., and Zhong, Y. (2003). Blockade of neurotransmission in Drosophila mushroom bodies impairs odor attraction, but not repulsion. Curr Biol 13, 1900-1904.
49. Kitamoto, T. (2001). Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47, 81-92.
50. Pascual, A., and Preat, T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science 294, 1115-1117.