簡易檢索 / 詳目顯示

研究生: 馬光輝
Ma, Kuang Hui
論文名稱: 相似或分化性指標及不歸還取樣模式下之物種多樣性的稀釋與預測
Rarefaction and extrapolation of similarity/differentiation measures and species diversity in sampling without replacement
指導教授: 趙蓮菊
Chao, Lien Ju
口試委員: 邱春火
胡殿中
鄭又仁
楊欣洲
謝叔蓉
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 236
中文關鍵詞: 相似性指標不歸還抽樣Horn熵指標Morisita指標Shannon熵指標Simpson指標Sørensen指標
外文關鍵詞: Horn index, Morisita index, sampling without replacement, Shannon index, similarity measures, Simpson index, Sørensen index
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在生態學研究領域上,探討不同地區 (或稱群落) 物種組成之相似 (或差異) 的原因一直是生態學中的核心問題,因此如何客觀地定量不同群落物種組成的相似,在此領域變得至為重要。雖然文獻中已有大量的相似性指標被發表出來,但其中只有Horn (1966) 依據訊息理論所建構的Horn熵指標滿足“單調性公設”性質。本研究將首先利用不同地區的取樣資料,透過Good-Turing頻度方程式探討任意群落權重比例混合群落熵指標及Horn熵指標之估計。

    再者,因為取樣問題,在有限的樣本下,對於相似性指標之估計通常會有較高估或低估之現象,本文引用Sanders (1968) 物種數的累積曲線之概念至相似性指標,包含Sørensen指標 (Sørensen 1948)、Horn熵指標 (Horn 1966) 及Morisita指標 (Morisita 1959),將各地區樣本之個體數或樣本涵蓋率標準化至相同下,再計算相似性指標之稀釋與外插曲線估計,以便比較與瞭解群落間物種組成之相似性。

    一般進行野外抽樣時,可分為歸還及不歸還抽樣方式,對於文獻上常用的三個生物多樣性指標,包含物種數指標、Shannon熵指標及Simpson指標,除了物種數指標已發展出於歸還及不歸還抽樣下之估計,對於Shannon熵指標及Simpson指標之估計皆架構於歸還抽樣下之討論。本研究將應用統計方法,提供架構於不歸還抽樣下之Shannon熵指標及Simpson指標之估計。再者,為了比較不同群落之物種多樣性,本文亦將Chao et al. (2014) 架構於歸還抽樣下,對於物種數指標、Shannon多樣性指標、Simpson多樣性指標及樣本涵蓋率,其稀釋與預測曲線之估計討論,推廣至不歸還抽樣下。

    本文除了詳細理論推導上述提出的各個生物多樣性指標之估計式外,並且以電腦模擬方式驗證各個估計式之表現,亦附加一些實例說明其應用。在混合群落熵指標及Horn熵指標之估計主題,應用哥斯大黎加的原始林資料及西非的蝙蝠資料作實例分析; 在相似性指標之稀釋與外插曲線估計主題,應用西非的蝙蝠資料作實例分析;在Shannon熵指標、Simpson指標、物種多樣性指標的稀釋與預測,及樣本涵蓋率之估計主題,應用哥斯大黎加奧薩地區的甲蟲資料及巴拿馬的鳥類資料作實例分析。


    How to assess and quantify species compositional (dis)similarity among communities has been a central objective in ecology. Although a large number of (dis)similarity measures have been published, only the Horn index (Horn 1966), or normalized mutual information, satisfies the essential monotonicity property. Empirical estimate of the Horn index depends strongly on sample sizes and may be subject to large bias. Based on sampling data, this thesis applies Good-Turing frequency formula to derive an analytic estimator of the Horn index under any community weight proportions. Simulations results show that the proposed estimator reduces the bias associated with the empirical estimator. As the sample size increases, the proposed estimator coverages quickly to the true value.

    This thesis also extends the previous rarefaction and extrapolation for species richness to (dis)similarity measures which include the Sørensen index (Sørensen 1948), Horn index (Horn 1966) and Morisita index (Morisita 1959). In order to compare the (dis)similarity measures across multiple assemblages, rarefaction and extrapolation methods are proposed based on standardized sample size or sample completeness. From simulations studies, our estimated rarefaction and extrapolation curve of (dis)similarity measures can accurately quantify the species compositional (dis)similarity among assemblages up to double the sample size in each community.

    Biological sampling can be conducted by sampling with replacement or sampling without replacement. For the three most commonly used indices of biological diversity, including species richness, Shannon diversity, and Simpson diversity, estimators were developed for both types of sampling schemes only for species richness. In this thesis, we derive estimators of Shannon and Simpson diversities under sampling without replacement. The corresponding sample-size-based and sample-coverage-based rarefaction and extrapolation sampling curves are also developed. From simulations studies, the proposed rarefaction and extrapolation method works well up to double the sample size in each community.

    Real data examples are used to illustrate all proposed estimators and to demonstrate various applications.

    第一章 前言 1 第二章 符號介紹、模型假設及相關文獻回顧 6 2.1符號介紹 6 2.2抽樣方式及模型假設 8 2.3單一群落多樣性指標及估計文獻回顧 10 2.3.1 Hill指標族介紹 10 2.3.2 物種數估計 15 2.3.3 Shannon熵指標估計 23 2.3.4 Simpson指標估計 31 2.4 物種預測函數估計與物種稀釋曲線文獻回顧 32 2.4.1物種預測函數估計 32 2.4.2物種稀釋曲線文獻回顧 34 2.5多群落相似性指標相關文獻回顧與其估計 39 第三章 混合群落熵指標及Horn熵指標估計 49 3.1混合群落熵指標 49 3.1.1混合群落熵指標估計 49 3.1.2混合群落熵指標估計式之標準差估計量 53 3.1.3模擬研究與討論 57 3.2 Horn熵指標 72 3.2.1多群落單調性 72 3.2.2 Horn熵指標估計 73 3.2.3模擬研究與討論 74 3.3實例分析 88 第四章 相似性指標之稀釋與外插曲線估計 97 4.1 Sørensen指標 98 4.1.1 Sørensen指標稀釋與外插曲線估計 98 4.1.2模擬研究與討論 104 4.2 Horn熵指標 114 4.2.1 Horn熵指標稀釋與外插曲線估計 114 4.2.2模擬研究與討論 118 4.3 Morisita指標 129 4.3.1 Morisita指標稀釋與外插曲線估計 129 4.3.2模擬研究與討論 130 4.4實例分析 141 第五章 不歸還抽樣下物種多樣性指標估計 151 5.1 Shannon熵指標 151 5.1.1Shannon熵指標估計 151 5.1.2 Shannon熵指標估計式之標準差估計方法 154 5.1.3模擬研究與討論 156 5.2 Simpson指標 164 5.2.1Simpson指標估計 164 5.2.2模擬研究與討論 165 5.3物種多樣性指標的稀釋與預測 172 5.3.1 物種數指標 173 5.3.2模擬研究與討論 175 5.3.3 Shannon多樣性指標 181 5.3.4模擬研究與討論 182 5.3.5 Simpson多樣性指標 189 5.3.6模擬研究與討論 189 5.3.7樣本涵蓋率 (Sample coverage) 196 5.3.8模擬研究與討論 199 5.4實例分析 205 第六章 結論 225 參考文獻 227

    1. Adams, J. E., McCune, E. D. (1979). Application of the generalized jackknife to Shannon measure of information used as an index of diversity. In In Ecological Diversity in Theory and Practice, eds. Grassle, J. F., Patil, G. P., Smith, W., Taille, C., Fairland, Mayland: International Co-operative Publishing House, 117-131.
    2. Basharin, G. P. (1959). On a statistical Estimate for the entropy of a sequence of independent random variables. Theory of Probability and Its Applications 4, 333-336.
    3. Beck, C., Schögl, F. (1995). Thermodynamics of chaotic systems: an introduction (No. 4). Cambridge University Press.
    4. Blyth, C. R. (1959). Note on estimating information. The Annals of Mathematical Statistics 30, 71-79.
    5. Boneh, S., Boneh, A., Caron, R. J. (1998). Estimating the prediction function and the number of unseen species in sampling with replacement. Journal of the American Statistical Association 93, 372-379.
    6. Bunge, J., Fitzpatrick, M. (1993). Estimating the number of species: a review. Journal of the American Statistical Association 88, 364-373.
    7. Chao, A. (1984). Nonparametric estimation of the number of classes in population. Scandinavian Journal of Statistics 11, 265-270.
    8. Chao, A. (2005). Species estimation and applications. Encyclopedia of Statistical Sciences, 2nd Edition, Vol. 12, 7907-7916, ( N. Balakrishnan, C. B. Read and B. Vidakovic, eds ) Wiley, New York.
    9. Chao, A., Chazdon, R. L., Colwell, R. K., Shen, T. J. (2006). Abundance‐based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361-371.
    10. Chao, A., Chiu, C. H., Hsieh, T. C. (2012). Proposing a resolution to debates on diversity partitioning. Ecology 93, 2037-2051.
    11. Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45-67.
    12. Chao, A., Hwang, W. H., Chen, Y. C., Kuo, C. Y. (2000). Estimating the number of shared species in two communities. Statistica Sinica 10, 227-246.
    13. Chao, A., Jost, L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533-2547.
    14. Chao, A., Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution 6, 873-882.
    15. Chao, A., Jost, L., Chiang, S.-C., Jiang, Y.-H., Chazdon, R. L. (2008). A two-stage probabilistic approach to multiple-community similarity indices. Biometrics 64, 1178-1186.
    16. Chao, A., Jost, L., Hsieh, T. C., Ma, K. H., Sherwin, W. B., Rollins, L. A. (2015). Expected Shannon entropy and Shannon differentiation between subpopulations for neutral genes under the finite island model. PloS one 10, e0125471.
    17. Chao, A., Lee, S.-M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association 87, 210-217.
    18. Chao, A., Lee, S.-M., Chen, T.-C. (1988). A generalized Good nonparametric coverage estimator. Chinese Journal of Mathematics 16, 189-199.
    19. Chao, A., Lin, C. W. (2012). Nonparametric lower bounds for species richness and shared species richness under sampling without replacement. Biometrics 68, 912-921.
    20. Chao, A., Ma, M.-C., Yang, M. C. K. (1993). Stopping rule and estimation for recapture debugging with unequal detection rates. Biometrika 80, 193-201.
    21. Chao, A., Shen, T.-J. (2003). Nonparametric estimation of Shannon index of diversity when there are unseen species in sample. Environmental and Ecological Statistics 10, 429-443.
    22. Chao, A., Shen, T.-J. (2004). Non-parametric prediction in species sampling. Journal of Agricultural, Biological and Environmental Statistics 9, 253-269.
    23. Chao, A., Shen, T. J. (2010). Program SPADE: Species Prediction And Diversity Estimation. Program and user’s guide at http://chao.stat.nthu.edu.tw/wordpress/software_download.html
    24. Chao, A., Shen, T. J., Hwang, W. H. (2006). Application of Laplace’s boundary-mode approximations to estimate species and shared species richness. Australian & New Zealand Journal of Statistics 48, 117-128.
    25. Chao, A., Wang, Y. T., Jost, L. (2013). Entropy and the species accumulation curve: a novel entropy estimator via discovery rates of new species. Methods in Ecology and Evolution 4, 1091-1100.
    26. Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S. Y., Mao, C. X., Chazdon, R. L., Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology 5, 3-21.
    27. Colwell, R. K., Mao, C. X., Chang, J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717-2727.
    28. Darroch, J. N. (1958). The multiple-recapture census: I. Estimation of a closed population. Biometrika 45, 343-359.
    29. De Bello, F., Lavergne, S., Meynard, C. N., Lepš, J., Thuiller, W. (2010). The partitioning of diversity: showing Theseus a way out of the labyrinth. Journal of Vegetation Science 21, 992-1000.
    30. Efron, B., Thisted, R. (1976). Estimating the number of unseen species: how many words did Shakespeare know? Biometrika 63, 435-447.
    31. Esty, W. W. (1982). Confidence intervals for the coverage of low coverage samples. The Annals of Statistics 10, 190-196.
    32. Esty, W. W. (1985). Estimation of the number of classes in a population and the coverage of a sample. Mathematical Scientist 10, 41-50.
    33. Esty, W. W. (1986). The efficiency of Good nonparametric coverage estimator. The Annals of Statistics 14, 1257-1260.
    34. Fahr, J., Kalko, E. K. V. (2011). Biome transitions as centres of diversity: habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography 34, 177-195.
    35. Fisher, R. A., Steven-Corbet, A., Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12, 42-58.
    36. Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40, 237-264.
    37. Good, I. J., Toulmin, G. H. (1956). The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 43, 45-63.
    38. Gray, H. L., Schucany, W. R. (1972). The generalized jackknife statistic. New York: Marcel Dekker.
    39. Haas, P. J., Stokes, S. L. (1998). Estimating the number of classes in a finite population. Journal of the American Statistical Association 93, 1475-1487.
    40. Harris, B. (1959). Determining bounds on integrals with applications to cataloging problems. The Annals of Mathematical Statistics 30, 521-548.
    41. Harris, B. (1968). Statistical inference in the classical occupancy problem unbiased estimation of the number of classes. Journal of the American Statistical Association 63, 837-847.
    42. Heck Jr, K. L., van Belle, G., Simberloff, D. (1975). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459-1461.
    43. Heltshe, J. F., Forrester, N. E. (1983). Estimating diversity using quadrat sampling. Biometrics 39, 1073-1076.
    44. Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427-432.
    45. Holst, L. (1981). Some asymptotic results for incomplete multinomial or poisson samples. Scandinavian Journal of Statistics 8, 243-246.
    46. Horn, H. S. (1966). Measurement of overlap in comparative ecological studies. The American Naturalist 100, 419-424.
    47. Horvitz, D. G., Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47, 663-685.
    48. Hurlbert, S. H. (1971). The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577-586.
    49. Hutcheson, K., Shenton, L. R. (1974). Some moments of an estimate of Shannon measure of information. Communications in Statistics 3, 89-94.
    50. Hwang, W. H., Lin, C. W., Shen, T. J. (2015). Good–Turing frequency estimation in a finite population. Biometrical Journal 57, 321-339.
    51. Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise des Sciences Naturelles 44, 223-270.
    52. Janzen, D. H. (1973a). Sweep samples of tropical foliage insects: description of study sites, with data on species abundances and size distributions. Ecology 54, 659-686.
    53. Janzen, D. H. (1973b). Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54, 687-708.
    54. Jost, L. (2006). Entropy and diversity. Oikos 113, 363-375.
    55. Jost, L. (2007). Partitioning diversity into independent alpha and beta components. Ecology 88, 2427-2439.
    56. Jost, L., DeVries, P., Walla, T., Greeney, H., Chao, A., Ricotta, C. (2010). Partitioning diversity for conservation analyses. Diversity and Distributions 16, 65-76.
    57. Keating, K. A., Quinn, J. F., Ivie, M. A., Ivie, L. L. (1998). Estimating the effectiveness of further sampling in species inventories. Ecological Applications 8, 1239-1249.
    58. MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews 40, 510-533.
    59. Magnussen, S., Boyle, T. J. B. (1995). Esimating sample size for inference about the Shannon-Weaver and the Simpson indices of species diversity. Forest Ecology and Management 78, 71-84.
    60. Magurran, A. E. (2004). Measuring biological diversity. Oxford: Blackwell.
    61. Miller, G. A., Madow, W. G. (1954). On the maximum likelihood estimate of the Shannon-Wiener measure of information. AFCRC-TR 54-75, Air Force Canbridge Research Center, Air Recarch and Development Command, Bollong Air Force Base, Washington D.C..
    62. Miller, R. I., Wiegert, R. G. (1989). Documenting completeness species-area relations, and the species-abundance distribution of a regional flora. Ecology 70, 16-22.
    63. Morisita, M. (1959). Measuring of interspecific association and similarity between communities. Memorias of the Faculty of Science, Kyushu University, Series E 3, 65-80.
    64. Pan, H. Y., Chao, A., Foissner, W. (2009). A nonparametric lower bound for the number of species shared by multiple communities. Journal of Agricultural, Biological, and Environmental Statistics 14, 452-468.
    65. Patil, G. P., Taillie, C. (1982). Diversity as a concept and its measurement. Journal of the American Statistical Association 77, 548-561.
    66. Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics 5, 285-307.
    67. Pielou, E. C. (1969). An introduction to mathematical ecology. Wiley-interscience, New York. p.286.
    68. Pielou, E. C. (1975). Ecological diversity. Wiley, New York.
    69. Quenouille, M. H. (1949). Approximate tests of correlation in time- series 3. Mathematical Proceedings of the Cambridge Philosophical Society 45, 483-484.
    70. Rényi, A. (1961). On measures of entropy and information. Proceedings of the 4th Berkeley Symposium on Mathematics Statistics and Probability 1, 547-561.
    71. Routledge, R. D. (1979). Diversity indices: Which ones are admissible? Journal of Theoretical Biology 76, 503-515.
    72. Sanders, H. L. (1968). Marine benthic diversity: a comparative study. The American Naturalist 102, 243-282.
    73. Schechtman, E., Wang, S. (2004). Jackknifing two-sample statistics. Journal of Statistical Planning and Inference 119, 329-340.
    74. Schemske, D. W., Brokaw, N. (1981). Treefalls and the distribution of understory birds in a tropical forest. Ecology 62, 938-945.
    75. Schur, I. (1923). Über eine Klasse von Mittelbildungen mit Anwendungen die Determinanten-Theorie, Sitzungsber. Berlin. Math. Gesellschaf 22, 9-20.
    76. Shannon, C. E. (1948). The mathematical theory of communication. Bell System Technical Journal 27, 379-423.
    77. Shen, T. J., Chao, A., Lin, C. F. (2003). Predicting the number of new species in further taxonomic sampling. Ecology 84, 798-804.
    78. Simpson, E. H. (1949). Measurement of diversity. Nature 163, 688.
    79. Shlosser, A. (1981). On estimation of the size of the dictionary of a long text on the basis of a sample. Engineering Cybernetics 19, 97-102.
    80. Smith, W., Grassle, J. F. (1977). Sampling properties of a family of diversity measures. Biometrics 33, 283-292.
    81. Solow, A. R., Polasky, S. (1999). A quick estimator for taxonomic surveys. Ecology 80, 2799-2803.
    82. Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter 5, 1-34.
    83. Weikard, H. P., Punt, M., Wessler, J. (2006). Diversity measurement combining relative abundances and taxonomic distinctiveness of species. Diversity and Distributions 12, 215-217.
    84. Whittaker, R. H. (1960). Vegetation of the Siskiyou mountains, Oregon and California. Ecological monographs 30, 279-338.
    85. Whittaker, R. H. (1965). Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution. Science 147, 250-260.
    86. Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon 21, 213-251.
    87. Wolda, H. (1981). Similarity indices, sample size and diversity. Oecologia 50, 296-302.
    88. Wright, S. (1943). Isolation by distance. Genetics 28, 114-138.
    89. Wright, S. (1950). Genetical structure of populations. Nature 166, 247-249.
    90. Zahl, S. (1977). Jackknifing an index of diversity. Ecology 58, 907-913.
    91. 江怡慧 (2008) 離散型及連續型多樣性資料之多群落相似指標。國立清華大學統計所博士論文。
    92. 林志偉 (2009) 不歸還取樣模式下之生物多樣性估計。國立清華大學統計所博士論文。
    93. 王怡婷 (2012) Hill數值指標與相似度指標的統計估計。國立清華大學統計所博士論文。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE