研究生: |
劉日新 Jih-Hsin,Liu |
---|---|
論文名稱: |
以微波共振方法探討金屬薄膜及奈米微顆粒之電性和磁性 Electrical and magnetic properties of metallic thin films and nanoparticles studied by microwave resonance methods |
指導教授: |
呂助增
Juh-Tzeng,Lue |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 微波 、微帶線 、奈米顆粒 |
外文關鍵詞: | microwave, microstrip, nanoparticle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分的實驗,是由不同型式的微帶線共振腔,來量測良好金屬薄膜的電導率,對於頻率及溫度的響應。其中的T型共振腔,由於製作及量測準確度優於直線型及環型共振腔,所以直接為後續高頻損耗量測所採用。由S21的穿透率頻譜結果,可發現鋁薄膜的表面電阻和頻率有二次開根號的正比關係,表面電阻和溫度也是直接的正比相依,正好符合了一般金屬的自由電子模型以及電子和聲子的散射結果。
另外,我們進一步地探討了,不良導體中,正常態和非正常態的鈮金屬膜的電性。 非正常態的鈮薄膜,由於電子傳輸時的侷限效應,其電阻率和溫度呈現負電阻係數的相依關係。另外,由於電子對於某頻率能量的共振吸收特性,將導致鈮金屬膜的電導率和頻率成近似一次線性正比的關係。此實驗方法,可更進一步探討多層金屬膜及超導金屬膜的電磁穿透特性。
第二部分的實驗,則是藉由量測具有良好帶狀磁區的鈷膜和鎳膜的電性,以印證磁區壁對於直流以及高頻訊號的散射,並用來建立自旋電子和磁區壁的碰撞行為。同時,也驗證在RF訊號下,鐵磁共振在超寬頻濾波器的應用。此外,藉由量測元件型式改為T型共振腔,在共振腔的結構共振和材料特性的鐵磁共振同時發生下,可發展出此結構在窄頻濾波器的應用。不僅如此,鐵磁材料的基本性,如磁化率、異向性磁場及鐵磁材料的高頻損耗,也可基於此量測方式精確求出。
最後,藉由改進傳統以來,由光學訊號的反射穿透來量測塊材介電係數的方法。我們自行設計了,以雙介質微波共振腔的方法,將奈米寸尺金屬顆粒和氧化鋁的粉末以一定比例,混合並填入單晶氧化鋁的共振腔內,利用TE011模態共振頻率大小及共振吸收頻譜能量的分析,用以量測奈米尺度下的金屬微顆粒的介電係數。
The frequency and temperature dependence of surface resistance of good conducting films was measured by a microwave microstrip method under various geometrical structures. The T-junction microstrip is superior to ring and strip-line resonators, which yields much accurate results with a simple fabrication process. An analysis of the transmission coefficient S21 spectra of the microstrip made of metallic aluminum films reveals that the surface resistance inherits with a one-half power law dependence on frequencies and a linear dependence on temperatures, which is in congruence with the results derived from the free electron model that only accounts on the electron-phonon interaction for a simple metal.
In addition, we have specifically investigated the electron transport with strong localization effect on the DC temperature-dependent resistivity in the abnormal and normal Nb films. The results indicate a deviation from one-half power law may occur in the abnormal film. This work can be further exploited to measure the conductivity and penetration depth of metals in multilayered structure or of superconducting films.
By exploiting the simplicity of a novel transport measurement on a ferromagnetic striped domain structure in a thin film of cobalt, we report the direct observation of ferromagnetic domain wall scattering. A model is proposed to describe these observations which highlights the crucial role played by electron spin precession in determining the electrical transport properties of magnetic interfaces.
Conventional ferromagnetic resonance for magnetic thin films is found to be co-existed with the transmission resonance of a T-type microwave micro-strip at certain applied magnetic fields. The conductivity, the magnetization, and the magnetic anisotropic field of magnetic films can be evolved eventually from the measured resonance frequency and the quality Q factor of the resonance spectra. This work provides a closely scrutinized method to delineate the magnetic and electric properties of the deposited magnetic films succinctly.
Finally, in a mimic of conventional optical reflection and transmission detection method to measure the dielectric constants of bulk materials, we develop a microwave double dielectric resonator to measure the dielectric constants of nano-metallic powders. The vacuum evaporated metallic nanoparticles are collected and filled inside the inner hole of a sapphire tube by which the resonant frequency and Q factor are measured at the TE011 mode to derive the dielectric constant.
Reference
[1] T.C. Edwards, “Foundation for Microstrip Circuit Design”, (Wiley-Interscience Pub. Co. New York 1981), chap.1, 5.
[2] L.J. Chen and J.T. Lue, “The transition from the d- to s-state due to thermnal fluctuation for high Tc superconductors as an evidence from the microwave penetration depth measurement”, IEEE, Trans. Microwave Theory and Tech., 46, pp.1251-1256, 1998.
[3] J.R. Powell, A. Porch, R.G. Humphreys, F. Wellhofer, M.J. Lancaster, and C.E. Gough, “ Field, temperature, and frequency dependence of the surface impedance of YBCO thin films”, Phys. Rev.B.57, pp.5474-5484, 1998.
[4] H.T. Lue, J.T. Lue and T.Y. Tseng, “Microwave penetration depth measurement for high Tc superconductors by dielectric resonators”, IEEE Trans. Instru. and Measure. 51, 433-439, 2002.
[5] T. C. Edwards, Foundation for Microstrip Circuit Design, Wiley-Interscience Pub. Co. New York 1981, Chaps. 1 and 5.
[6] R. Modre, I. Schurrer, and E. Schachinger, “In-plane London penetration depth of superconductors with mixed-symmetry order parameters,” Phys. Rev. B, vol. 57, pp. 5496-5504, 1998.
[7] L. J. Chen and J. T. Lue, “The transition from the d- to s-state due to thermal fluctuation for high Tc superconductors as an evidence from the microwave penetration depth measurement,” IEEE, Trans. Microwave Theory and Tech., vol. 46, pp. 1251-1256, 1998.
[8] J. R. Powell, A. Porch, R. G. Humphreys, F. Wellhofer, M. J. Lancaster, and C. E. Gough, “ Field, temperature, and frequency dependence of the surface impedance of YBCO thin films,” Phys. Rev. B, vol. 57, pp. 5474-5484, 1998.
[9] H.T. Lue, J.T. Lue, and T.Y. Tseng, “Microwave penetration depth measurement for high Tc superconductors by dielectric resonators,” IEEE Trans. Instrem. Meas., 51, 433-430 (2002).
[10] J.H. Liu. Y.C. Lin. J.T. Lue, and C.J. Wu, “Resistivity measurements of layered metallic films at various microwave frequencies and temperatures using the miro-strip T-junction method”, Meas. Sci. Technol, 13, 1-6 (2002).
[11] L. Bonalde, B.D. Yanoff, M.B. Salamon, D.J. Harlingen, E.M. Chia, Z.Q. Mao, and Y. Macno, “Temperature dependence of the penetratrion depth in Sr2RuO4: Evidence in the gap function,” Phys. Rev. Lett. 85, 4775-4778 (2000).
[12] N. Chen S. Tsai and Jun Su “A wideband electronically tunable microwave notch Cramer, etc “High attenuation tunable microwave notch filiters utilizing ferromagnetic resonance”, 87, 6911-6913 (2000).
[13] M. Tsutsumi and S. Tamura “Microstrip Line Filters Using Yttium Iron Garnet Film”,IEEE Trans. Microw. Theory Tech., 40, 400-402 (1992).
[14] A. Dubey, etc,” Magnetically tunable microsrtipe resonator based on polycrystalline ferrite ”Electronics Letters, 37, 1296-1297 (2001).
[15] T. C. Edwards,” Foundations for Microstrip Circuit Design”, (John Wiley & sons, New York, 1983).
[16] A. Suksanskii, V. Korenivski and A.Gromov, “Impedance of ferromagnetic sandwich strip”, J. Appl. Phys. 89, 775-782 (2001). A. Gromov, V. Korenivski, “Electromagnetic analysis of layered magnetic/conductor structures”, J. Physics D:Appl. Phys. 33, 773-779 (2000).
[17] D. Spenato, A. Fessant, J. Gieraltowski, J. Loaec, and H. Legall, “Losses associated with spin dynamics in ferromagnetic thin-films”, J. Mag. And Mag.Mater. 140, 1979-1980 (1995).
[18] N. Vakadinovic, M. Labrune, J. Ben Youssef, A. Marty, JC Toussaint and H. Le Gall, “Ferromagnetic resonance spectra in a weak stripe domain structure”, Phys. Rev. B 65 (2002).
[19] R. Prozorov, R.W. Giannetta, P. Fournier, and R.L. Greene, Evidence for nodal quasiparticles in electron-doped cuprites from penetration depth measurements, Phys. Rev. Lett. 85, 3700-3703 (2000).
[20] I. Bonalde, B.D. Yanoff, M.B. Salamon, D.J. van Harlingen, E.M.E. Chia, Z.Q. Mao and Y. Maeno, Temperature dependence of the penetration depth in Sr2RuO4: evidence for nodes in the gap function, Phys. Rev. Lett. 85, 4775-4778 (2000).
[21] M. Salluzzo, F. Palomba, G.Pica, A. Andreone, I. Maggio-Aprile, O. Fisher, C. Cantoni, and D.P. Norton, Role of Nd/Ba disorder on the penetration depth of NdBa2Cu3O7-y thin films, Phys. Rev. Lett. 85, 1116-1119 (2000).
[22] L.J. Chen and J.T. Lue, The transition from the d- to s- state due to thermal fluctuation for high Tc superconductors as an evidence from the microwave penetration depth measurement, IEEE Trans. On Microwave Theor. and Tech. MTT-46, 1251-1256 (1998).
[23] R.D. Richtmyer, “Dielectric resonator”, J.Appl. Phys. 10. 391-398 (1939).
[24] S.B. Cohn, Microwave Bandpass Filters Containing High-Q Dielectric Resonator, IEEE Trans. Microwave theory Tech., MTT-16, 218 (1968).
[25] Y. Kobayashi and M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method, IEEE Trans.Microwave theory Tech., MTT-33, 586-589, July (1985).
[26] B.W. Hakki and P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Trans.Microwave theory Tech., MTT-8, 402-410, July (1960).
[27] O.K. Wakine, Recent Development of Dielectric Resonator Materials and Filters in Japan, Ferroelectrics 91, 69-86 (1989).
[28] W.C. Huang and J.T. Lue, Quantum size effect on the optical properties of small metallic particles, Phys. Rev. B49,17279-17285 (1994).
[29] H.A. Wheeler, “Transmission line properties of parallel strips separated by a dielectric sheet, “IEEE Trans., Vol. MTT-13, pp. 172-185, 1965.
[30] H.A. Wheeler, “Transmission line properties of a strip on a dielectric sheet on a plane, “ IEEE Trans., Vol. MTT-25, pp. 631-647, 1977.
[31] W.J. Getsinger, “Microstrip dispersion model, “IEEE Trans., vol. MTT-21, pp.34-39, 1973.
[32] M. Kobayashi, “Important role of inflection frequency in the disperse properties of microstrip line,” IEEE trans. Microwave Theory Tech., vol. MTT-30, pp. 2057-2059, 1982.
[33] R.A. Pucel, et al., “Losses in microstrip,” IEEE trans. MTT, vol. MTT-16, pp. 342-350, 1968.
[34] T.C. Edwards, “Foundations for Microstrip Circuit Design”, (John Wiley&sons, New York 1983).
[35] J.R. James and A. Henderson, “High frequency behavior of microstrip open-circuit termination,” IEE Journal on Microwaves, Optics and Acoustics, vol. 3, pp. 205-218, 1979.
[36] A. Gopinath, "Maximum Q-factor of microstrip resonator", IEEE Trans. Microwave Theory Tech., vol. MTT-29, No. 2, pp.128-131, 1978.
[37] M.E. Goldfarb, "Losses in GaAs microstrip", IEEE Trans. Microwave Theory Tech., vol. 38, No. 12, pp.1957-1963, 1983.
[38] M. Kirschning, "Accurate model for open end effect of microstrip lines,"Electronics Letters, vol. 17, pp. 123-125, 1981.
[39] G.D. Vendelin, "Limitations on stripline Q", The Microwave Journal, pp63-69, 1970.
[40] R.H. Hoffmann, "Handbook of microwave integrated circuits",(Artech House , 1987).
[41] J.H. Takemoto, "Microstrip ring resonator technique for measuring microwave attenuation in high-Tc superconducting thin films", IEEE Trans. Microwave Theory Tech., vol.37, No. 10, pp.1650-1652, 1989.
[42] R.P. Owens, "Curvature effect in microstrip ring resonators", Electronics Letters, vol. 12, No.14, pp356-357, 1976.
[43] J.E. Altken, "Swept-frequency microwave Q-factor measurement", Proc. IEEE, vol.123, No.9, pp.855-862, 1976.
[44] E.L. Ginzton, "Microwave Q measurements in the presence of coupling losses”, IRE Trans, MTT-6, pp383-389, 1958.
[45] J. Carroll, M. Li, and Chang, "New technique to measure transmission line attenuation", IEEE Trans. Microwave Theory Tech., vol. 43, No. 1, pp.219-222, 1995.
[46] E.L.Ginzton, “Microwave Measurements”, (MacGraw-Hill, New York, 1957). Ch.9.
[47] A. A. Abrikosov, Fundamental of the Theory of Metals, North-Holland, Amsterdam, 1988, Chap.7.
[48] J.T. Lue and J.S. Sheng, “Coupled surface plasmon polariton waves and the optical size effect on the optical reflectance of metal insulator superlattices,” Phys. Rev. B, vol. 43, pp. 14241-14244, 1991.
[49] J.T. Lue, W.C. Huang, and S.K. Ma, “Spin-flip scattering for the electrical property of metallic nanoparicle thin films,” Phys. Rev. B, vol. 51, pp. 14570-14575, 1995.
[50] N. F. Mott and E. A. Davis, Electronic Processes in Non-crystalline materials, 2nd Edition, Clarendon, Oxford, 1979.
[51] L.J. Chen, J.H. Tyan, and J.T. Lue, “The non-metallic conductivity of NbGe Films sputtered on silicon substrates,” J. Phys. Chem. Solids, vol. 55, pp. 871-879, 1994.
[52] M. Pollak, B. Shklovskii, “Hopping transport in solids”, (Elsevier Science Pub. Co.,New York 1991), p84-p89.
[53] A D Kent ,J Yu ,U R¨ udiger and S S P Parkin, “Domain wall resistivity in epitaxial thin film microstructures”, J. Phys.: Condens. Matter 13 (2001) R461–R488.
[54] Michael Ziese, Martin J. Thornton, “Spin electronics”, New York :Springer,2001.
[55] B. Heinrich, J.A.C. Bland, “Ultrathin magnetic structures”, Berlin-Verlag;Springer,c1994-New York.
[56] Pippard, A. B., “Magnetoresistance in metals”, Cambridge University Press,1989.New York.
[57] T. R. MCGUIRE AND R. I. POTTER, “Anisotropic Magnetoresistance in Ferromagnetic 3d Alloys”, IEETRANSACTIONS ON MAGNETICS, NO. 4, JULY 1975, p1018-p1038.
[58] J. F. Gregg,1 W. Allen, “Giant Magnetoresistive Effects in a Single Element Magnetic Thin Film”, Phys. Rev. Lett. 77, 1580–1583 (1996).
[59]Andrew D. Kent, Ulrich Ruediger, and Jun Yu, “Magnetoresistance,micromagnetism, and domain wall effects in epitaxial Fe and Co structures with stripe domains”, J. Appl. Phys. 85,5243-5248 (1999).
[60] Peter M. Levy and Shufeng Zhang, “Resistivity due to Domain Wall Scattering”, Phys. Rev. Lett. 79, 5110-5113 (1997).
[61]Charles Kittel, “On the theory of ferromagnetic resonance absorption”, Phy. Rev. 73,p155-161.
[62] Shing-Wen Chang 1 ,Jih-Hsin Liu 2 and Juh-Tzeng Lue, “Coexistence of ferromagnetic resonance and microstrip resonance for nickel films under magnetic fields”, Meas.Sci.Technol. 14 (2003) 583–588.
[63] J H Liu ,C L Chen ,H TLue and J T Lue, “Measurement of dielectric constants of metallic nanoparticles by a microwave dielectric resonator”, Meas. Sci. Technol. 13 (2002) 1–6.
[64] S. Ramo, et al., Fields and Waves in Communication Electronics, John Wiley, New York, 1967, Chap. 9.
[65] Sadayuki Nishiki and Shuomi Yuki, "Transmission loss of thick-film microstriplines," IEEE Trans. Microwave Theory Tech., vol. MTT-30, No. 7, pp. 1104-1107, 1982