研究生: |
阿維納什 Lende, Avinash B. |
---|---|
論文名稱: |
利用異相催化劑對鄰苯二甲酸二辛酯、PBT 和 PET 進行更綠色的氫化反應 Greener Hydrogenation of Dioctyl Phthalate, PBT and PET Using Heterogeneous Catalysts |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: |
蔡德豪
Tsai, De-Hao 潘詠庭 Pan, Yung-Tin 陳郁文 Chen, Yu-Wen 蔣孝澈 Chiang, Anthony S. T. |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 190 |
中文關鍵詞: | 氢化 、氢化 、多相催化剂 、PBT 、PET 、DOP |
外文關鍵詞: | Hydrogenation, Hydrogenation, Heterogeneous catalyst, PBT, PET, DOP |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究證實芳香環在多相催化劑上選擇性加氫並製造環保產品,加氫產品對精細化工、聚合物、石油及燃料工業的生產相當重要,因此對於芳香環氫化研究的需求大量增加。本研究在不同的反應溫度、反應時間、H2壓力、CO2壓力、載體、單金屬和雙金屬基多相催化劑,以及不同的金屬附載量下進行反應。研究出三種反應系統: 無溶劑下的磷苯二甲酸二辛酯(DOP)氫化反應、聚對苯二甲酸乙二醇酯(PET)和聚對苯二甲酸丁二醇酯(PBT)使用1,1,1,3,3,3-六氟-2-丙醇 (HFIP) 和水作為溶劑。
透過化學流體沉積 (CFD) 將 Rh 摻入鋁改性的中孔泡沫 (MCF) 中,藉此開發了一種新型催化劑,用於將 DOP 選擇性加氫成環保增塑劑六氫鄰苯二甲酸二(2-乙基己基)酯 (DEHHP)。含有 5 和 1 wt% Rh 的 Si/Al 摩爾比的 Al 改性 MCF 在 80 °C 和 1000 psi H2 壓力下實現了 100% DOP 向 DEHHP 的轉化,反應時間為 60 分鐘。 當 Al 加入 MCF 載體時,Rh 與載體的相互作用變得更強。 通過密切監測 Si/Al 比來有效控制 Al 提供的酸度是提高 Rh/Al-MCF 催化劑催化活性的關鍵。含有Si/Al 莫耳為 5 和 1 wt% Rh 的 Al 改性 MCF 在 80 °C 和 1000 psi H2 壓力下完成了 100% DOP 向 DEHHP 的轉化,反應時間為 60 分鐘,當 Al 加入 MCF 載體時,Rh 與載體的相互作用變得更強,通過密切監測 Si/Al 比來有效控制 Al 提供的酸度是提高 Rh/Al-MCF 催化劑催化活性的關鍵。
使用多元醇合成法合成的 Vulcan XC-72 負載的 Rh-Pt 雙金屬催化劑,將溶解在 HFIP 中的 PET 和 PBT 直接氫化成環保聚酯 PECHD 和 PBC。 使用多元醇合成方法生成的催化劑載體表面上存在的 RhOx 物質促進了 PET 和 PBT 的氫化,與單金屬 Rh 催化劑相比,發現 Rh-Pt 雙金屬催化劑更適合加氫系統,主要是因為Rh 的強大芳香環吸附能力與 Pt 增加的 H2 溢出同時作用。在 1000 psi 的 H2 壓力和 50℃條件下進行60 分鐘,在 Rh-Pt 雙金屬催化劑上使 PET 完全氫化為 PECHD 和 PBT 為 PBC,其理論 Rh 和 Pt 金屬負載量為 2.5 wt%,並發現在氫化後使用壓縮的 CO2 反溶劑技術可大幅回收 PECHD 和 PBC。
本研究提出以水為溶劑和 SBA-15 負載的 Rh-Pt 雙金屬催化劑各 2.5 wt%對 PET 和 PBT 進行氫化,該催化劑是使用 CFD 合成,並以超臨界 CO2 作為溶劑。發現 Rh 和 Pt 奈米粒子在 Rh 和 Pt 前驅體氫還原後,均勻分散在 SBA-15 的孔內。雖然 PET 和 PBT 不溶於水,但因為水上反應機制,且在劇烈攪拌下,兩者都可以分別完全轉化為 PECHD 和 PBC。由於 Rh-Pt 協同作用,雙金屬催化劑 Rh2.5Pt2.5/SBA-15 呈現出比單金屬 5.0 wt% Rh 催化劑更高的催化活性,正如文獻中的第一性原理密度泛函理論計算所提出的。Rh-Pt 協同作用被認為是PET中芳香環和 PBT在Pt(111) 上的有利吸附的組合,使它們易於被 Rh 選擇性氫化,以及降低 Rh-Pt 表面上 H2的結合能 合金奈米粒子,導致在 Rh-Pt合金納米粒子表面的 H2 溢出的活化能降低。透過對反應參數的研究,發現 90 °C 的溫度、1000 psi 的 H2 壓力和 80 分鐘的反應時間是完成 100% 加氫的最佳反應條件。可以從中得知製備PECHD和PBC的傳統方法相當繁瑣且耗能,涉及對苯二甲酸(TPA)通過酯化轉化為對苯二甲酸二甲酯(DMT),然後進行加氫生成1,4-環己二甲酸二甲酯( DMCD) 進一步將 DMCD 加氫生成 1, 4-環己烷二甲酸 (CHDA) 和 1,4- 環己烷二甲醇 (CHDM)。1,2-乙二醇(EDO)和1,4-丁二醇(BDO)與CHDA的酯化和隨後的聚合反應最終分別產生PECHD和PBC。
本研究為這些製備的催化劑使用各種催化劑表徵工具進行表徵,以了解催化劑的物理和化學性質,並研究了幾個反應參數以得知最有利的反應條件。
In this thesis, the selective hydrogenation of aromatic ring to environmentally friendly products over heterogenous catalysts were demonstrated. The hydrogenated products are important for the production of fine chemicals, polymers, petroleum and fuel industry. Therefore, the demand to perform more research on hydrogenation of aromatic ring has increased. The reactions performed in this thesis were carried out at different reaction temperature, reaction time, H2 pressure, CO2 pressure, supports, mono and bimetallic based heterogenous catalysts with varying metals loading amount. Three reaction systems were investigated: hydrogenation of dioctyl phthalate (DOP) without solvent, polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) using 1,1,1,3,3,3-hexafluro-2-propanol (HFIP) as solvent and water as solvent.
A new catalyst was developed for the selective hydrogenation of DOP to environmentally friendly plasticizer di(2-ethylhexyl) hexahydrophthalate (DEHHP) by incorporating Rh via chemical fluid deposition (CFD) into an Al-modified mesocellular foam (MCF). The Al-modified MCF containing a Si/Al molar ratio of 5 and 1 wt% Rh achieved 100% conversion of DOP to DEHHP with no side products at 80 °C and 1000 psi H2 pressure for 60 min reaction time. The interaction of Rh with the support became stronger when Al was incorporated onto the MCF supports. An effective control of the acidity provided by Al by closely monitoring the Si/Al ratio was key in improving the catalytic activity of Rh/Al-MCF catalysts.
The direct hydrogenation of PET and PBT dissolved in HFIP to environmentally friendly polyesters PECHD and PBC respectively, using a Vulcan XC-72 supported Rh-Pt bimetallic catalyst synthesized via a polyol method. The hydrogenation of PET and PBT was promoted by RhOx species present on the catalyst support surface which was generated using the polyol synthesis method. As compared to the monometallic Rh catalyst, the Rh-Pt bimetallic catalyst was found to be superior for hydrogenation system. This superiority was attributed to the strong aromatic ring adsorption ability of Rh working in synergy with an increased H2 spillover by Pt. At a H2 pressure of 1000 psi and 50 oC for 60 min, complete hydrogenation of PET to PECHD and PBT to PBC were achieved over the Rh-Pt bimetallic catalyst possessing theoretical Rh and Pt metal loadings of 2.5 wt% each. PECHD and PBC was found to be recovered to a very high extent using the compressed CO2 anti-solvent technique after hydrogenation.
The hydrogenation of PET and PBT were also proposed in this thesis using water as the solvent and an SBA-15-supported Rh−Pt bimetallic catalyst (2.5 wt % each). The catalyst was synthesized using CFD in which supercritical CO2 was used as the solvent. Rh and Pt nanoparticles were found to be uniformly dispersed inside the pores of SBA-15 after hydrogen reduction of the Rh and Pt precursors. Though PET and PBT were not soluble in water, both could be completely converted to PECHD and PBC respectively, under vigorous stirring owing to the advent of an on-water mechanism. The bimetallic catalyst Rh2.5Pt2.5/SBA-15 showed higher catalytic activity over the monometallic 5.0 wt% Rh catalyst due to the Rh−Pt synergy, as proposed by first principles density functional theory calculations in open literature. The Rh−Pt synergy was proposed as a combination of favorable adsorption of aromatic rings in PET and PBT on Pt(111), making them susceptible for selective hydrogenation by Rh, and a lowering of binding energy for H2 on the surface of Rh−Pt alloy NPs, thereby leading to a subsequent reduction in the activation energy for the H2 spillover on the surface of Rh−Pt alloy NPs. Through a systematic study of reaction variables, a temperature of 90 °C, a H2 pressure of 1000 psi, and a reaction time of 80 min were found to be the optimal reaction conditions at which 100% hydrogenation could be achieved. It can be seen that the conventional means to prepare PECHD and PBC were quite tedious and energy intensive, involving the conversion of terephthalic acid (TPA) to dimethyl terephthalate (DMT) via esterification and undergoes subsequent hydrogenation to produce dimethyl 1,4-cyclohexanedicarboxylate (DMCD) further the hydrogenation of DMCD yields both 1, 4-cyclohexanedicarboxylic acid (CHDA) and 1,4-cyclohexanedimethanol (CHDM). The esterification and subsequent polymerization reactions of 1,2-ethanediol (EDO) and 1,4-butandiol (BDO) with CHDA finally produced PECHD and PBC respectively.
The catalysts prepared for these studies, presented in this thesis were characterized using various catalyst characterization tools to understand the physical and chemical properties of the catalysts, and several reaction variables were studied to obtain the most favourable reaction conditions.
References
Abarca, G.; Viscardi, J.; Prechtl, M. H. J.; Scholten, J. D.; Bernardi, F.; Baptista, D. L.; Dupont, J. Challenging Thermodynamics: Hydrogenation Of Benzene To 1, 3-Cyclohexadiene By Ru@ Pt Nanoparticles. ChemCatChem, 2017, 9, 204-211.
Adegbola, A.; Aghachi, I. E. A.; Sadiku-Agboola, O. SEM And AFM Microscopical Characterization Of Rpan Fibre And PET Blends. Alexandria Eng. J. 2018, 57, 475-481.
Appleton, P.; Wood, M. A. Process. U.S. Patent 5414159A, May 9, 1995.
Auer, E.; Freund, A.; Pietsch, J.; Tacke, T. Carbons As Supports For Industrial Precious Metal Catalysts, Appl. Catal. A: Gen. 1998, 173, 259-271;
Austin, G. T. Shreve’s Chemical Process Industries. 1984, (Mcgraw-Hill Book).
Awaja, F.; Pavel, D. Recycling Of PET, Eur. Polym. J. 2005, 41, 1453-1477.
Bartolome, L.; Imran, M.; Lee, K. G. Superparamagnetic Γ-Fe2O3 Nanoparticles As An Easily Recoverable Catalyst For The Chemical Recycling Of PET, Green Chem. 2014, 16, 279-286.
Baumgartner, R.; Mcneill, K. Hydrodefluorination And Hydrogenation Of Fluorobenzene Under Mild Aqueous Conditions. Environ. Sci. Technol. 2012, 46, 10199-10205.
Berti, C.; Celli, A.; Marchese, P.; Marianucci, E.; Barbiroli, G.; Di Credico, D. Effects Of Chemical Structure And Plasma Treatment On The Surface Properties Of Polysulfones. E-Polym., 2007, 57, 1-7.
Berti, C.; Binassi, E.; Celli, A. Poly 1,4-Cyclohexylenedimethylene-1,4-Cyclohexanedicarboxylate Influence Of Stereochemistry Of 1,4-Cyclohexylene Units On Thermal Properties, J. Polym. Sci: Part B: Polym. Phys. 2008 a, 46, 619-630.
Berti, C.; Celli, A.; Marchese, P.; Marianucci, E.; Barbiroli, G.; Credico, F. D. Influence Of Molecular Structure And Stereochemistry Of The 1,4‐Cyclohexylene Ring On Thermal And Mechanical Behavior Of Poly(Butylene 1,4‐Cyclohexanedicarboxylate), Macromol. Chem. Phys. 2008 b, 209, 1333-1344.
Berti, C.; Celli, A.; Marchese, P.; Barbiroli, G.; Credico, F. D.; Verney, V.; Commereuc, S. Novel Copolyesters Based On Poly(Alkylene Dicarboxylate)S: 2. Thermal Behavior And Biodegradation Of Fully Aliphatic Random Copolymers Containing 1,4-Cyclohexylene Rings, Eur. Polym. J. 2009, 45, 2402-2412.
Bhattacharjee, S.: Tan, C. S. Hydrodeoxygenation Of Oleic Acid In Hexane Containing Pressurized CO2 Using Fe/SBA-15 As Catalyst, J. Clean. Prod. 2017, 156, 203-213.
Bhattacharjee, S.; Lu, W. Y.; Tan, C. S. A Cleaner Route For Hydrodeoxygenation Of Oleic Acid In Hexane Containing Pressurized CO2 Over A MCF Supported Fe-Pd-Ni Trimetallic Catalyst. Fuel 2019, 243, 210-220.
Blanchard, F.; Christel, A.; Gorski, G.; Welle, F. Plastics And Environmental Sustainability. Plast. Europe. 2003, 93, 42-45.
Bloise, N.; Berardi, E.; Gualandi, C.; Zaghi, E.; Gigli, M.; Duelen, R.; Ceccarelli, G.; Cortesi, E. E.; Costamagna, D.; Bruni, G.; Lotti, N.; Focarete, M. L.; Visai, L.; Sampaolesi, M. Ether-Oxygen Containing Electrospun Microfibrous And Sub-Microfibrous Scaffolds Based On Poly(Butylene-1,4-Cyclohexanedicarboxylate) For Skeletal Muscle Tissue Engineering, Int. J. Mol. Sci. 2018, 19, 3212-3234.
Bohnen, H.; Klein, T.; Bergrath, K. Hydrogenation Of Dioctyl Phthalate Over Supported Ni Catalysts. Celanese Chemicals Europe Gmbh, U.S. Patent 20030009051Al, 2004.
Cann M. C.; Connelly, M.E.; Real-World Cases In Green Chemistry. 2000, (American Chemical Society).
Celli, A.; Marchese, P.; Sullalti, S.; Berti, C.; Barbiroli, G. Eco‐Friendly Poly (Butylene 1, 4‐Cyclohexanedicarboxylate): Relationships Between Stereochemistry And Crystallization Behavior, Macromol. Chem. Phys. 2011, 212, 1524-1534.
Chae, H. J.; Kim, T. W.; Moon, Y. K.; Kim, H. K.; Jeong, K. E.; Kim, C. U.; Jeong, S. Y. Butadiene Production From Bioethanol And Acetaldehyde Over Tantalum Oxide-Supported Ordered Mesoporous Silica Catalysts. Appl. Catal. B 2014, 150-151, 596-604.
Chen, L. P.; Yee, A. F.; Goetz, J. M.; Schaefer, J. Molecular Structure Effects On The Secondary Relaxation And Impact Strength Of A Series Of Polyester Copolymer Glasses. Macromolecules. 1998 a, 31, 5371-5379.
Chen, Y. C.; Tan, C. S. Hydrogenation Of P-Chloronitrobenzene By Ni–B Nanocatalyst In CO2-Expanded Methanol. J. Supercrit. Fluids 2007 b, 41, 272-278.
Chen, S.; Li, J.; Zhang, Y.; Zhao, Y.; Hong, J. Effect Of Tetrahedral Aluminum On The Catalytic Performance Of Al–SBA-15 Supported Ru Catalysts In Fischer–Tropsch Synthesis, Catal. Sci. Technol. 2013 c, 3, 1063-1068.
Chenier, P. J. Survey Of Industrial Chemistry. 1992, (VCH).
Cui, J.; Tan, J.; Zhu, Y.; Cheng, F. Aqueous Hydrogenation Of Levulinic Acid To 1,4‐Pentanediol Over Mo‐Modified Ru/Activated Carbon Catalyst, ChemSusChem 2018, 11, 1316-1320.
Davis, B.; Petke, F. D. Polyesters Containing A Critical Range Of 1,4-Cyclohexanedicarboxylic Acid. US Patent. 4,075,180, 1978.
Deschamps, A. A.; Grijpma, D. W.; Feijen, J. Poly(Ethylene Oxide)/Poly(Butylene Terephthalate) Segmented Block Copolymers: The Effect Of Copolymer Composition On Physical Properties And Degradation Behavior. Polymer. 2001, 42, 9335-9345.
Dintcheva, N. T.; La Mantia, F. P.; Trotta, F.; Luda, M. P.; Camino, G.; Paci, M.; Di Maio, L.; Acierno, D. Effects Of Filler Type And Processing Apparatus On The Properties Of The Recycled “Light Fraction” From Municipal Post‐Consumer Plastics. Polym. Adv. Technol. 2001, 12, 552-560.
Eguizabal, A.; Uson, L.; Sebastian, V.; Hueso, J. L.; Pina, M. P. Efficient And Facile Tuning Of Vulcan XC-72 With Ultra-Small Pt Nanoparticles For Electrocatalytic Applications, RSC Adv. 2015, 5, 90691-90697.
El-Hadi, A.; Schnabel, R.; Straube, E.; Muller, G.; Henning, S. Prediction Of The Elastic Modulus Of Wood Flour/Kenaf Fibre/Polypropylene Hybrid Composites. Polym. Test 2002, 21, 665-672.
Fabbri, M.; Soccio, M.; Gigli, M.; Guidotti, G.; Gamberini, R.; Gazzano, M.; Siracusa, V.; Rimini, B.; Lotti, N.; Munari, A. Design Of Fully Aliphatic Multiblock Poly(Ester Urethane)S Displaying Thermoplastic Elastomeric Properties, Polymer 2016, 83, 154-161.
Feng, L.; Zhu, W.; Li, C.; Guan, G.; Zhang, D.; Xiaoa, Y.; Zhenga, L. A High-Molecular-Weight And High-T G Poly (Ester Carbonate) Partially Based On Isosorbide: Synthesis And Structure–Property Relationships, Polym. Chem. 2015, 6, 633-642.
Fievet, F.; Merah, S. A. The Polyol Process: A Unique Method For Easy Access To Metal Nanoparticles With Tailored Sizes, Shapes And Compositions, Chem. Soc. Rev. 2018, 47, 5187-5233.
Fortunati, E.; Gigli, M.; Luzi, F.; Lotti, N.; Munari, A.; Gazzano, M.; Armentano, I.; Kenny, J. M. Poly(Butylene Cyclohexanedicarboxylate/Diglycolate) Random Copolymers Reinforced With Swcnts For Multifunctional Conductive Biopolymer Composites, Polymer Letters 2016, 10, 111-124.
Gandini, A.; Lacerda, T. M. From Monomers To Polymers From Renewable Resources: Recent Advances, Prog. Polym. Sci. 2015, 48, 1-39.
Genta, M.; Iwaya, T.; Sasaki, M.; Goto, M.; Hirose, T. Depolymerization Mechanism Of Poly(Ethylene Terephthalate) In Supercritical Methanol, Ind. Eng. Chem. Res. 2005, 44, 3894-3900.
Gigli, M.; Lotti, N.; Gazzano, M.; Siracusa, V.; Finelli, L.; Munari, A.; Rosa, M. D. Fully Aliphatic Copolyesters Based On Poly(Butylene-1,4-Cyclohexanedicarboxylate) With Promising Mechanical And Barrier Properties For Food Packaging Applications, Ind. Eng. Chem. Res. 2013 a, 52, 12876-12886.
Gigli, M.; Lotti, N.; Siracusa, V.; Gazzano, M.; Munari, A.; Rosa, M. D. Effect Of Molecular Architecture And Chemical Structure On Solid-State And Barrier Properties Of Heteroatom-Containing Aliphatic Polyesters, Eur. Polym. J. 2016 b, 78, 314-325.
Gluhoi, A. C.; Marginean P.; Stanescu, U. Effect Of Supports On The Activity Of Nickel Catalysts In Acetonitrile Hydrogenation. Appl. Catal. A Gen. 2005, 294, 208-214.
Goje, S.; Mishra, S. Chemical Kinetics, Simulation, And Thermodynamics Of Glycolytic Depolymerization Of Poly(Ethylene Terephthalate) Waste With Catalyst Optimization For Recycling Of Value Added Monomeric Products, Macromol. Mater. Eng. 2003, 288, 326-336.
Gong, L.; Xiang, L.; Zhang, J.; Chen, J.; Zeng, H. Fundamentals And Advances In The Adhesion Of Polymer Surfaces And Thin Films, Langmuir 2019, 35, 15914-15936.
Grass, M.; Kaizik, A.; Bueschken, W.; Tuchlenski, A.; Maschmeyer, D.; Gaudschun K. A.; Brocksien, F. Catalyst And Method For Hydrogenating Aromatic Compounds. US Pat., 7361714B2, 2008.
Greeley, J.; Mavrikakis, M. Near-Surface Alloys For Hydrogen Fuel Cell Applications. Catal. Today 2006, 111, 52-58.
Gu, M. X.; Kou, Y.; Qi, S. C.; Shao, M.Q.; Yue, M. B.; Liu, X. Q.; Sun, L. B. Highly Dispersive Cobalt Oxide Constructed In Confined Space For Oxygen Evolution Reaction. ACS Sustainable Chem. Eng. 2019, 7, 2837−2843.
Hall, S. C.; Subramanian, V.; Teeter, G.; Rambabu, B. Influence Of Metal–Support Interaction In Pt/C On CO And Methanol Oxidation Reactions. Solid State Ionics. 2004, 175, 809-813.
Hepner, R. R.; Michel, R. E. A Review On Synthesis Of Value Added Products From Polyethylene Terephthalate (PET) Waste. US Patent No. 5391263 (1995).
Hu, S.; Xue, M.; Chen H.; Shen, J.; The Effect Of Surface Acidic And Basic Properties On The Hydrogenation Of Aromatic Rings Over The Supported Nickel Catalysts. Chem. Eng. J. 2010, 162, 371-379.
Huang, L.; Xing, Z. M.; Kou, Y.; Shi, L. Y.; Liu, X. Q.; Jiang, Y.; Sun, L. B. Fabrication Of Rhodium Nanoparticles With Reduced Sizes: An Exploration Of Confined Spaces. Ind. Eng. Chem. Res. 2018, 57, 3561−3566.
Huirache-Acuña, R.; Pawelec, B.; Munoz, E. R.; Nava, R.; Espino, J.; Fierro, J. L. G. Comparison Of The Morphology And HDS Activity Of Ternary Co-Mo-W Catalysts Supported On P-Modified SBA-15 And SBA-16 Substrates. Appl. Catal. B 2009, 92, 168-184.
Hunt, J. Petroleum And Its Products. 1996, (W. H. Freeman), Chapter 3.
Inoue, M.; Akamaru, S.; Taguchi, A.; Abe, T. Physical And Electrochemical Properties Of Pt–Ru/C Samples Prepared On Various Carbon Supports By Using The Barrel Sputtering System. Vacuum. 2009, 83, 658-663.
Irfan, M.; Glasnov, T. N.; Kappe, C. O. Heterogeneous Catalytic Hydrogenation Reactions In Continuous‐Flow Reactors, Chemsuschem 2011, 4, 300-316.
Jadhav J. Y.; Kantoi, S. W. Encyclopedia Of Polymer Science And Engineering 1986, (Wiley, New York).
Jenkins, S. J. Aromatic Adsorption On Metals Via First-Principles Density Functional Theory, Proc. R. Soc., Ser. A 2009, 465, 2949-2976.
Jessop, P. G. Searching For Green Solvents, Green Chem. 2011, 13, 1391-1398.
Jhonson, J. E. 1H Nuclear Magnetic Resonance Study Of Polyurethane Prepolymers From Toluene Diisocyanate And Polypropylene Glycol. J. Appl. Polym. Sci. 2003, 2, 205-212.
John, M. A. Cleaning Up The Waste Stream: Recycling Plastics 1993. (WM2, Univ. Of Missouri).
Jonatan, A.; Lars, R.; Anna, R. H.; Lindh, C. H.; Jonsson, A. G.; Giwercman, A. Prenatal Phthalate Exposure And Reproductive Function In Young Men. Environmental Research 2015, 138, 264–270.
Katherine, M. Pediatric Exposure And Potential Toxicity Of Phthalate Plasticizers. Pediatrics. 2003, 111, 1467–1474.
Kelsey, D. R.; Kiibler, K. S.; Tutunjian, P. N. Thermal Stability Of Polytrimethylene Terephthalate, Polymer 2005, 46, 8937-8946.
Kent, A. J. Riegel’s Handbook Of Industrial Chemistry. 1983, (Van Nostrand Reinhold).
Kim, S. H.; Kim, S. H.; Jung, Y. TGF-Β3 Encapsulated PLCL Scaffold By A Supercritical CO2–HFIP Co-Solvent System For Cartilage Tissue Engineering, J. Control. Release 2015, 206, 101-107.
Koytsoumpa, E. I.; Bergins, C.; Kakaras, E. The CO2 Economy: Review Of CO2 Capture And Reuse Technologies, J. Supercrit. Fluids 2018, 132, 3-16.
Kustrowski, P.; Chmielarz, L.; Dziembaj, R.; Cool, P.; Vansant, E. F. Modification Of MCM-48-, SBA-15-, MCF-, And MSU-Type Mesoporous Silicas With Transition Metal Oxides Using The Molecular Designed Dispersion Method. J. Phys. Chem. B 2005, 109, 11552-11558.
Lai, B. X.; Bhattacharjee, S.; Huang, Y. H.; Duh, A. B.; Wang, P. C.; Tan, C. S. Hydrogenation Of High Molecular Weight Bisphenol A Type Epoxy Resin BE503 In A Functional And Greener Solvent Mixture Using A Rh Catalyst Supported On Carbon Black, Polymers 2020, 12, 2513-2167.
Lende, A. B.; Bhattacharjee, S.; Lu, W. Y.; Tan, C. S. Hydrogenation Of Dioctyl Phthalate Over A Rh-Supported Al Modified Mesocellular Foam Catalyst, New J. Chem. 2019, 43, 5623-5631.
Lende, A. B.; Bhattacharjee, S.; Tan, C. S. Hydrogenation Of Polyethylene Terephthalate To Environmentally Friendly Polyester Over Vulcan XC-72 Carbon Supported Rh-Pt Bimetallic Catalyst, Catal. Today 2020 a: In Press, Https://Doi.Org/10.1016/J.Cattod.2020.09.013
Lende, A. B.; Bhattacharjee, S.; Tan, C. S. Production Of Environmentally Friendly Polyester By Hydrogenation Of Polybutylene Terephthalate Over Rh-Pt Catalysts Supported On Carbon Black And Recovery By Compressed CO2 Anti-Solvent Technique, Ind. Eng. Chem. Res. 2020 b, 59, 21333–21346.
Lende, A. B.; Bhattacharjee, S.; Tan, C. S. The “On-Water” Hydrogenation Of Polyethylene Terephthalate To Environmentally Friendly Polyester By The Catalyst Rh2.5Pt2.5/SBA-15., ACS Sus. Chem. Eng. 2021, 9, 7224-7234.
Li Q.; Lueking, A. D. Effect Of Surface Oxygen Groups And Water On Hydrogen Spillover In Pt-Doped Activated Carbon, J. Phys. Chem. C 2011, 115, 10, 4273–4282.
Liu, F.; Qiu, J.; Wang, J.; Zhang, J.; Na, H.; Zhu, J. Role Of Cis-1,4-Cyclohexanedicarboxylic Acid In The Regulation Of The Structure And Properties Of A Poly(Butylene Adipate-Co-Butylene 1,4-Cyclohexanedicarboxylate) Copolymer, RSC Adv. 2016, 6, 65889-65897.
Liu, F.; Zhang, J.; Wang, J.; Liu, X.; Zhang, R.; Hu, G.; Na, H.; Zhu, J. Soft Segment Free Thermoplastic Polyester Elastomers With High Performance, J. Mater. Chem. A 2015, 3, 13637-13641.
Liu, F.; Zhang, J.; Wang, J.; Na, H.; Zhu, J. Incorporation Of 1,4-Cyclohexanedicarboxylic Acid Into Poly(Butylene Terephthalate)-B-Poly(Tetramethylene Glycol) To Alter Thermal Properties Without Compromising Tensile And Elastic Properties, RSC Adv. 2015, 5, 94091-94098.
Liu, J.; Yee, A. F. Enhancing Plastic Yielding In Polyestercarbonate Glasses By 1,4-Cyclohexylene Linkage Addition. Macromolecules. 1998, 31, 7865-7872.
Liu, S.; Xie, C.; Yu, S.; Liu, F.; Song, Z. Hydrogenation Of 2-Ethylhexenal Using Thermoregulated Phase-Transfer Catalyst For Production Of 2-Ethylhexanol. Ind. Eng. Chem. Res. 2011, 50, 2478-2481.
Logan, F. H. Process For Preparing Dimethyl 1, 4-Cyclohexanedicarboxylate, U.S. Patent 3027398A, March 27, 1962.
Lu, W. Y.; Bhattacharjee, S.; Lai, B. X.; Duh, A. B.; Wang, P. C.; Tan, C. S. Hydrogenation Of Bisphenol A-Type Epoxy Resin (BE186) Over Vulcan XC-72-Supported Rh And Rh–Pt Catalysts In Ethyl Acetate-Containing Water, Ind. Eng. Chem. Res. 2019, 58, 16326-16337.
Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J. E. Polymer Biodegradation: Mechanisms And Estimation Techniques–A Review, Chemosphere 2008, 73, 429-442.
Maeda, N.; Chen, N.; Tirrell, M.; Israelachvili, J. N. Adhesion And Friction Mechanisms Of Polymer-On-Polymer Surfaces, Science 2002, 297, 379-382.
Miao, Y.; Lu, G.; Liu, X.; Guo, Y.; Wang, Y.; Guo, Y. Mo-Functionalized MCF Meso-Material And Its Catalytic Performance For Epoxidation Of Propylene By Cumene Hydroperoxide. Microporous Mesoporous Mater. 2009,122, 55-60.
Michel, R. Recovery Of Ester Monomer Polyester Resins. Eur. Patent No. 484963 (1992).
Michel, R. Proceedings Of ARC'96 Technology Spark Recycling Conference.1996, SPE, Ed. Brookfield).
Michel, R.; Jones P.; Everhart, D. A Proposal Submitted To The Presidential Green. Chemistry Challenge Awards Program (1997).
Miller, S. A. Sustainable Polymers: Opportunities For The Next Decade, ACS Macro. Letters 2013, 2, 550-554.
Modak, A.; Bhanja, P.; Bhaumik, A. Pt Nanoparticles Supported Over Porous Porphyrin Nanospheres For Chemoselective Hydrogenation Reactions, Chemcatchem 2019, 11, 1977-1985.
Morse, P. M. Size-And Support-Dependency In The Catalysis Of Gold. Chem. Eng. News 1998, 76, 33-36.
Narayan, S.; Muldoon, J.; Finn, M. J.; Fokin, V. V.; Kolb, H. C.; Sharpless, K. B. On Water”: Unique Reactivity Of Organic Compounds In Aqueous Suspension, Angew. Chem. Int. Ed. 2005, 44, 3275-3279.
Narayanamoorthy, B.; Datta, K. K. R.; Eswaramoorthy, M.; Balaji, S. Highly Active And Stable Pt3Rh Nanoclusters As Support Less Electrocatalyst For Methanol Oxidation In Direct Methanol Fuel Cells, ACS Catal. 2014, 4, 3621-3629.
Niklasson, C.; Smedler, G. Kinetics Of Adsorption And Reaction For The Consecutive Hydrogenation Of 2-Ethylhexenal On A Nickel/Silica Catalyst. Ind. Eng. Chem. Res. 1987, 26, 403-410.
Oliveira, R. L.; Nijholt, T.; Shakeri, M.; De Jongh, P. E.; Klein Gebbink, R. J. M.; De Jong, D. K. P. Encapsulation Of Chiral Fe (Salen) In Mesoporous Silica Structures For Use As Catalysts To Produce Optically Active Sulfoxides. Catal. Sci. Technol. 2016, 6, 5124-5133.
Pan, H. B.; Wai, C. M. Facile Sonochemical Synthesis Of Carbon Nanotube-Supported Bimetallic Pt–Rh Nanoparticles For Room Temperature Hydrogenation Of Arenes, New J. Chem. 2011, 35, 1649-1660.
Papayannakos, N. Hydrogenation Of Benzene On La–Ni And Clay Supported La–Ni Catalysts. Applied Catalysis A: General 1998, 175, 21-31.
Park, J. C.; Kwon, J. I.; Kang, S. W.; Chun, D. H.; Jung, H.; Leea, H. T.; Yang, J. I. Highly Productive Cobalt Nanoparticles Supported On Mesocellular Silica Foam For The Fischer–Tropsch Reaction. New J. Chem. 2016, 40, 9586-9592.
Phan-Vu, D. H.; Tan, C. S. Synthesis Of Phthalate-Free Plasticizers By Hydrogenation In Water Using Rhni Bimetallic Catalyst On Aluminated SBA-15, RSC Adv. 2017, 7, 18178-18188.
Pires, N. M. T.; Coutinho, F. M. B.; Costa, M. S. Synthesis And Characterization Of High Cis-Polybutadiene: Influence Of Monomer Concentration And Reaction Temperature. Eur. Polym. J. 2004, 40, 2599-2605.
Piumetti, M.; Hussain, M.; Fino, D.; Russo, N. Mesoporous Silica Supported Rh Catalysts For High Concentration N2O Decomposition. Appl. Catal. B 2015, 165, 158-168.
Rachiero, J. P.; Demirci, U. B.; Miele, P. Facile Synthesis By Polyol Method Of A Ruthenium Catalyst Supported On Γ-Al2O3 For Hydrolytic Dehydrogenation Of Ammonia Borane. Catalysis Today, 2011, 170, 85-92.
Reddy, M. M.; Vivekanandhan, S.; Misra, M.; Bhatia, S. K.; Mohanty, A. K. Biobased Plastics And Bionanocomposites: Current Status And Future Opportunities, Prog. Polym. Sci. 2013, 38, 1653-1689.
Richardson, S. M.; Bosch, S.; Swarts, S.; Llados, F.; Gray, D. A. Toxicological Profile For Di(2-Ethylhexyl) Phthalate (DEHP). ATSDR And SRC Press: Georgia, NY, 2002.
Righetti, M. C.; Lorenzo, M. L. D.; Angiuli, M.; Tombari, E.; Pietra, P. L. Poly (Butylene Terephthalate)/Poly (Ε-Caprolactone) Blends: Influence Of PCL Molecular Mass On PBT Melting And Crystallization Behavior, Euro. Polym. J. 2007, 43, 4726-4738.
Rothwell, P. Metal-Free Hydrogenation Catalysis Of Polycyclic Aromatic Hydrocarbons. Chemical Communications 1997, 15, 1331-1338.
Roucoux, A.; Schulz, J.; Patin, H. Reduced Transition Metal Colloids: A Novel Family Of Reusable Catalysts?. Chem. Review. 2002, 102, 3757-3778.
Sampson, J.; Korte, D. DEHP‐Plasticised PVC: Relevance To Blood Services. Transfusion Medicine. 2011, 21, 73–83.
Schmalz, H.; Bo, A.; Lange, R.; Krausch, G. Morphological Studies Of Poly(Styrene)-Block-Poly(Ethylene-Co-Butylene)-Block-Poly(Methyl Methacrylate) In The Composition Region Of The “Knitting Pattern” Morphology. Macromolecules. 2001, 34, 8720-8731.
Sharma, S. K.; Sidhpuria, K. B.; Jasra, R. V. Ruthenium Containing Hydrotalcite As A Heterogeneous Catalyst For Hydrogenation Of Benzene To Cyclohexane. J. Mol. Catal. A 2011, 335, 65-70.
Sharma, V.; Parashar, P.; Srivastava, P.; Kumar, S.; Agarwal, D. D.; Richharia, N. Recycling Of Waste PET-Bottles Using Dimethyl Sulfoxide And Hydrotalcite Catalyst, J. Appl. Polym. Sci. 2013, 129, 1513-1519.
Sharman, M.; Read, W. A.; Castle, L.; Gilbert, J. Levels Of Di‐(2‐Ethylhexyl) Phthalate And Total Phthalate Esters In Milk, Cream, Butter And Cheese. Food Additives And Contaminants 1994, 11, 375–385.
Shin, E. J.; Keane, M. A. Gas-Phase Hydrogenation/Hydrogenolysis Of Phenol Over Supported Nickel Catalysts. Ind. & Eng. Chem. Res. 2000, 39, 883-892.
Song, S.; Yang, X.; Wang, B.; Zhou, X.; Duan, A.; Chi, K.; Zhao, Z.; Xu, C.; Chen, Z.; Li, J. Activity Evaluation Of Como Nanoparticles Supported On Meso-Microporous Composites In Dibenzothiophene Hydrodesulphurization. Chinese J. Catal. 2017, 38, 1347-1359.
Stadler, B. M.; Hinze, S.; Tin, S.; De Vries, J. G. Hydrogenation Of Polyesters To Polyether Polyols, Chemsuschem 2019, 12, 4082-4087.
Subagyono, D. J. N.; Marshall, M.; Knowles, G. P.; Chaffee, A. L. CO2 Adsorption By Amine Modified Siliceous Mesostructured Cellular Foam (MCF) In Humidified Gas. Microporous Mesoporous Mater, 2014, 186, 84-93.
Tang, H. Synthesis Of Gasoline And Jet Fuel Range Cycloalkanes And Aromatics From Poly(Ethylene Terephthalate) Waste. Green Chem. 2019, 21, 2709-2719.
Toppinen, S.; Salmi, T.; Rantakyla, T. K.; Aittamaa, J. Liquid-Phase Hydrogenation Kinetics Of Aromatic Hydrocarbon Mixtures. Ind. & Eng. Chem. 1997, 36, 2101-2109.
Tukker, A. Plastics Waste: Feedstock Recycling, Chemical Recycling And Incineration. Rapra Rev. Rep. 2002, 13, 148-156.
Wang, L.; Xie, Z.; Bi, X. Preparation And Characterization Of Aliphatic/Aromatic Co-Polyesters Based On 1,4-Cyclohexanedicarboxylic Acid. Polym. Degrad. Stab. 2006, 91, 2220-2228.
Wang, Q.; Yao, X.; Geng, Y.; Zhou, Q.; Lu X.; Zhang, S. Deep Eutectic Solvents As Highly Active Catalysts For The Fast And Mild Glycolysis Of Poly(Ethylene Terephthalate)(PET), Green Chem. 2015, 17, 2473-2479.
Welle, F. Twenty Years Of PET Bottle To Bottle Recycling-An Overview, Resour. Consev. Recy. 2011, 55, 865-875.
Wypych, G. Handbook Of Plasticizers. 2nd Edition, 2012, Chemtech Publishing.
Xiang-Chen, H.; Jinyong, L.; Timothy J. S. Ruthenium Catalyst For The Reduction Of N-Nitrosamine Water Contaminants. Environ. Sci. Technol. 2018, 52, 4235-4243.
Xu, Q. Q.; Xu, G.; Yin, J. Z.; Wang, A. Q.; Ma, Y. L.; Gao, J. J. Preparation Of Super Highly Dispersed Co3O4@SBA-15 With Different Morphologies In Supercritical CO2 With The Assistance Of Dilute Acids, Ind. Eng. Chem. Res. 2014, 53, 10366-10371.
Yasmin T.; Muller, K. Synthesis And Characterization Of Surface Modified SBA-15 Silica Materials And Their Application In Chromatography. J. Chromato. A, 2011, 1218, 6464-6475.
Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Synthesis And Applications Of Supramolecular‐Templated Mesoporous Materials. Angew. Chem. Int. Ed. 1999, 38, 56-77.
Yu, W.; Bhattacharjee, S.; Lu, W. Y.; Tan, C. S. Synthesis Of Al-Modified SBA-15-Supported Ru Catalysts By Chemical Fluid Deposition For Hydrogenation Of Dimethyl Terephthalate In Water, ACS Sustainable Chem. Eng. 2020, 8, 4058−4068.
Yu, W.; Hsu, Y. P.; Tan, C. S. Synthesis Of Rhodium-Platinum Bimetallic Catalysts Supported On SBA-15 By Chemical Fluid Deposition For The Hydrogenation Of Terephthalic Acid In Water. Appl. Catal. B 2016, 196, 185-192.
Yu, W.; Huang, J. H.; Tan, C. S. Purification Of Polybutylene Terephthalate By Oligomer Removal Using A Compressed CO2 Antisolvent, Polymers 2019, 11, 1230.
Yuan, Y.; Yan, N.; Dyson, P. J. Advances In The Rational Design Of Rhodium Nanoparticle Catalysts: Control Via Manipulation Of The Nanoparticle Core And Xtabilizer, ACS Catal. 2012, 2, 1057-1069.
Zhang, F.; Chen, J.; Chen, P.; Sun, Z.; Xu, S. Pd Nanoparticles Supported On Hydrotalcite-Modified Porous Alumina Spheres As Selective Hydrogenation Catalyst. Aiche J. 2012, 58, 1853−1861.
Zhang, J.; Liu, L.; Wang, X.; Huang, Q.; Tian, M.; Shen, H. Low-Level Environmental Phthalate Exposure Associates With Urine Metabolome Alteration In A Chinese Male Cohort. Environ. Sci. Technol. 2016, 50, 5953-5960.
Zhao, D.; Feng, J.; Hua, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock Copolymer Syntheses Of Mesoporous Silica With Periodic 50 To 300 Angstrom Pores. Science 1998, 279, 548-552.
Zhao, J.; Xue, M.; Huang, Y.; Shen, Hydrogenation Of Dioctyl Phthalate Over Supported Ni Catalysts. J. Catal. Commun. 2011, 16, 30-34.
Zheng, Y.; Yanful, E. K.; Bassi, A. S. A Review Of Plastic Waste Biodegradation, Critic. Review. Biotech. 2005, 25, 243-250.
Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Metal–Organic Frameworks For Heterogeneous Basic Catalysis.Chem. Rev. 2017, 117, 8129−8176.
Ziabka, M.; Dziadek, M. Long-Term Stability Of Two Thermoplastic Polymers Modified With Silver Nanoparticles, Nanomaterials 2019, 9, 1-10.