研究生: |
游雅涵 Yu, Ya-Han |
---|---|
論文名稱: |
DNA-金屬奈米粒子複合物製備與太陽能電池應用 Preparation and characterization of DNA-metal nanoparticle composite and its application in solar cells |
指導教授: |
洪毓玨
Hung, Yu-Chueh |
口試委員: |
金雅琴
黃淑娟 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 脫氧核醣核酸 、光化學法 、太陽能電池 、奈米粒子 |
外文關鍵詞: | DNA, photochemical method, solar cell, nanoparticle |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新穎的生物材料脫氧核醣核酸 (deoxyribonucleic acid,DNA)由於其特殊的結構和性質使它在奈米科技的應用上日趨廣泛,近年來,以DNA結構做為模板成長金屬奈米粒子的應用在電子元件領域更是越來越多。
不同於以往複雜的化學製備方法,本論文以DNA生物材料為模板利用光化學法(photochemical method)製備銀奈米粒子,使奈米粒子成長於其中並藉由不同波段可見光源改變其形態,藉此製造出不同形狀的奈米粒子,我們使用三種波段的可見光:紫光LED、藍光LED和紅光LED,成功地於DNA模板中製造三種不同形狀的奈米粒子並將其應用於太陽能電池,研究發現利用金屬奈米粒子的散射效應,不同形狀的奈米粒子會在元件上對應不同波段的外部量子效率提升,而光電流最多能提升6%。
以DNA模板合成金屬奈米粒子的製程方法簡單,且在元件製作上大幅減少了製成時間及成本,再配合不同波段的光源照射來控制其表面電漿共振的波段,這些特性將能在有機發光二極體、表面增強拉曼散射和生物感測等領域有更廣泛及多功能性的應用。
[1] 莊萬發,“超微粒子理論應用”,復漢出版社,84年4月。
[2] 陳毓宏,“新穎的奈米粒子合成方法與在生醫上的應用:金銀、金鈀、金”,國立成功大學化學研究所博士論文,92年9月。
[3] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107, 668 (2003).
[4] A. Brioude and M. P. Pileni , “Silver Nanodisks: Optical Properties Study Using the Discrete Dipole Approximation Method,” J. Phys. Chem. B 109, 23371-23377 (2005).
[5] V. Germain, A. Brioude, D. Ingert and M. P. Pileni, “Silver nanodisks: Size selection via centrifugation and optical properties,” J. Chem. Phys.122, 124707 (2005).
[6] R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zheng, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms,” Science 294, 1901-1903 (2001).
[7] R. C. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz and C. A. Mirkin, “Molecular structure of nucleic acids,” Nature 425, 487 (2003).
[8] F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow and H. Sawabe, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution,” J. Phys. Chem. B 104, 8333 (2000).
[9] Y. Takeuchi, T. Ida and K. Kimura, “Colloidal Stability of Gold Nanoparticles in 2-Propanol under Laser Irradiation,” J. Phys. Chem. 101 , 1322 (1997).
[10] K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal.Chem. 67, 735 (1995).
[11] K. L. McGilvray, M. R. Decan, D. Wang, and J. C. Scaiano, “Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles,” J. Am. Chem. Soc. 128, 15980-15981 (2006).
[12] M. T. Reetz, and W. Helbig, “Size-Selective Synthesis of Nanostructured Transition Metal Clusters,” J. Am. Chem. Soc. 116, 7401 (1994).
[13] N. A. Dhas, H. Cohen and A. Gredanken, “Sonochemical Synthesis of Molybdenum Oxide and Molybdenum Carbide Silica Nanocomposites,” J. Phys. Chem. B 101, 6834 (1997).
[14] C. J. Murphy and N. R. Jana, “Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires,” Adv. Mater. 14, 80-82 (2002).
[15] Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver Nanoparticles,” Science 298, 2176 (2002).
[16] Y. Sun, Y. Xia, B. T. Mayers, T. Herricks and Y. Xia, “Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(VinylPyrrolidone),” Chem. Mater. 14, 4736-4745 (2002).
[17] Y. Sun, B. Mayers, T. Herricks and Y. Xia, “Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence,” Nano Lett. 3, 955-960 (2003).
[18] F. Kim, J. H. Song and P. Yang, “Photochemical Synthesis of Gold Nanorods,” J. Am. Chem. Soc. 124, 14316-14317 (2002).
[19] M. Maillard, P. Huang and L. Brus, “Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+],” Nano Lett. 3, 1611 (2003).
[20] A. Callegari, D. Tonti and M. Chergui, “Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape,” Nano Lett. 3, 1565-1568 (2003).
[21] K. L. McGilvray, M. R. Decan, D. Wang and J. C. Scaiano, “Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles,” J. Am. Chem. Soc. 128, 15980-15981 (2006).
[22] K. G. Stamplecoskie and J. C. Scaiano, “Light Emitting Diode Irradiation Can Control the Morphology and Optical Properties of Silver Nanoparticles,” J. Am. Chem. Soc. 132, 1825-1827 (2010).
[23] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids,” Nature 171, 737-738 (1953).
[24] J. A. Hagen, “Enhanced Luminous Efficiency and Brightness using DNA Electron Blocking Layers in Bio Organic Light Emitting Diodes,” Ph.D. dissertation , The University of Cincinnati (2006).
[25] S. Cui, Y. Liu, Z. Yang and X. Wei, “Construction of silver nanowires on DNA template by an electrochemical technique,” Mater. Des. 28, 722-725 (2007).
[26] D. Zhaoxiang and M. Chengde, “DNA-Templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays,” Nano Lett. 3, 1545-1548 (2003).
[27] M. Mertig, L. C. Ciacchi, R. Seidel, W. Pompe, and A. D. Vita, “DNA as a Selective Metallization Template,” Nano Lett. 2, 841-844 (2002).
[28] H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama and T. Ohtani, “Highly ordered assemblies of Au nanoparticles organized on DNA,” Nano Lett. 3, 1391-1394 (2003).
[29] C. F. Monson and A. T. Woolley, “DNA-templated construction of copper nanowires,” Nano Lett. 3, 359-363 (2003).
[30] Q. Gu, C. Cheng, S. Suryanarayanan, K. Dai and D. T. Haynie, “DNA-templated fabrication of nickel nanocluster chains,” Physica E 33, 92-98 (2006).
[31] L. Dong, T. Hollis, B. A. Connolly, N. G. Wright, B. R. Horrocks, and A. Houlton, “DNA-Templated Semiconductor Nanoparticle Chains and Wires,” Adv. Mater. 19, 1748-1751, (2007).
[32] J. Richter, “Metallization of DNA,” Physica E 16, 157-173(2002)
[33] J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke and H. K. Schackert, “Nanoscale Palladium Metallization of DNA,” Adv. Mater. 12, 507 (2000).
[34] R. Seidel, M. Mertig and W. Pompe, “Scanning force microscopy of DNA metallization,” Surf. Int. Anal. 33, 151 (2002).
[35] E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire,” Nature 391, 775 (1998).
[36] K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan and E. Braun, “Sequence-Specific Molecular Lithography on Single DNA Molecules,” Science 297, 72 (2002).
[37] W. E. Ford, O. Harnack, A. Yasuda and J. M. Wessels, “Platinated DNA as Precursors to Templated Chains of Metal Nanoparticles,” Adv. Mater. 13, 1793 (2001).
[38] G. Wei, H. Zhou, Z. Liu, Y. Song, L. Wang, L. Sun and Z. Li, “One-Step Synthesis of Silver Nanoparticles, Nanorods, and Nanowires on the Surface of DNA Network,” J. Phys. Chem. B 109, 8738-8743 (2005).
[39] L. Berti, A. Alessandrini and P. Facci, “DNA-Templated Photoinduced Silver Deposition” J. Am. Chem. Soc. 127, 11216-11217 (2005).
[40] D. M. Chapin, C. S. Fuller and G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power,” J. Appl. Phys. 25, 676-677 (1954).
[41] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32, 510-519 (1961).
[42] D. M. Schaadt, B. Feng and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[43] D. Derkacs, S. H. Lim, P. Matheu, W. Mar and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[44] S. Pillai, K. R. Catchpole, T. Trupke and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[45] K. Nakayama, K. Tanabe and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
[46] X. Zheng, X. Zhao, D. Guo, B. Tang, S. Xu, B. Zhao and W. Xu, “Photochemical Formation of Silver Nanodecahedra: Structural Selection by the Excitation Wavelength,” Langmuir 25, 3802-3807 (2009).
[47] A. Singh, J. Jayabalan1, R. Chari, H. Srivastava and
S. M. Oak, “Tuning the localized surface plasmon resonance of silver nanoplatelet colloids,” J. Phys. D: Appl. Phys. 43, 335401 (2010).
[48] A. Henglein, “Colloidal Silver Nanoparticles: Photochemical
Preparation and Interaction with O2, CCl4, and Some Metal Ions,” Chem. Mater.10 , 444-450 (1998).
[49] T. Linnert, P. Mulvaney and A. Henglein, “Photochemistry of colloidal silver particles: the effects of nitrous oxide and adsorbed cyanide ion,” Bunsen-Ges. Phys.Chem. , 95(7), 838-841 (1991).
[50] J. Lu, L. Yang, A. Xie and Y. Shen, “DNA-templated photo-induced silver nanowires: Fabrication and use in detection of relative humidity,” Biophys. Chem. 145, 91-97 (2009).
[51] J. T. Petty, J. Zheng, N. V. Hud and R. M. Dickson, “DNA-Templated Ag Nanocluster Formation,” J. Am. Chem. Soc. 126, 5207-5212 (2004).
[52] D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu and E. T. Yu, “Nanoparticle-induced light scattering for improved performance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).