簡易檢索 / 詳目顯示

研究生: 劉昭彥
Jhao-Yan Liu
論文名稱: 應用於生醫植入式裝置之無線能量傳輸與能量回授控制機制電路
Wireless Power Transmission and Power Feedback Control Function Circuit for a Biomedical Implantable Device
指導教授: 鄭桂忠
Kea-Tiong Tang
口試委員: 陳新
Hsin Chen
黃柏鈞
Po-Chiun Huang
李順裕
Shuenn-Yuh Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 生醫植入晶片無線能量傳輸
外文關鍵詞: Implantable Circuits, Wireless Power Transmission
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技不斷的進步,造就了生醫植入式裝置誕生,對人類醫學帶來了重大改變。而由於半導體製程的發展,減少了整體裝置的大小以及耗電,讓植入式裝置在設計上有更有彈性。現今的植入式裝置結合了無線能量及資料傳輸,不但改善了電源供應的問題,在使用上也更加方便。
    本論文提出一個交流對直流轉換器,結合了整流器以及直流對直流轉換器的控制電路,可以同時達到整流以及穩壓的功能,減少整體電路所使用的面積及能量的消耗。此電路同時會將輸出負載訊息以LSK(Load Shift Keying)回傳至外部裝置,我們可以透過回傳的訊號判斷輸入的能量是否過量或不足,提升整體系統的效率。電路使用TSMC 90nm 1P9M製程,總面積為0.071mm2(不包含Pad)。此電路可以在輸入交流電壓1.5V至2V,頻率1至10MHz的情況下產生1V的直流電壓以及10mA最大輸出電流。
    在本研究論文中,建立了一個無線能量與資料傳輸的電路,晶片端包含了所設計的交流對直流轉換器電路,整個傳輸系統利用線圈將外部能量以電磁耦合的方式傳輸,接收到的能量透過交流對直流轉換器產生穩定的電源供植入端電路使用。同時將輸出負載訊息以LSK的方式回傳至外部裝置,回傳的訊號將過解調之後,可以用來控制輸出能量的大小,讓植入端電路可以接收到適當大小的能量。

    關鍵字:生醫植入晶片、無線能量傳輸


    The implant device is created with the developing of the technology, and it causes the large change to medical science. With the evolution of the semi-conductor process, the size and power consumption of total device are reduced, making the implant device is more complex in design. Now implant device is combined with wireless power and data transmission, and it not only improves the problem of power supplying but also becomes more convenient in using.
    This thesis presents an AC-DC converter. This circuit is combined with the rectifier and the controller of the DC-DC converter, so it can get the function of rectification and regulation at the same time, and reduce the area and power consumption of the total device. This circuit also transfers the loading condition back to the external device by LSK (Load shift keying). We can use the feedback signal to determine if the input power is not enough or excessive, which increases the efficiency of the total system. The circuit is fabricated with the TSMC 90nm 1P9M process. The circuit area is 0.071mm2. The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.
    A wireless power and data transmission for biomedical implant SoC is presented in the thesis. The chip contains the presented AC-DC converter. The transmission system utilizes coils inductive coupling the external power into chip, and the AC-DC converter outputs stable voltage for implant circuit. It also transfers the loading condition back to the external device by LSK. After demodulating, the feedback signal can be used to control the output power of external device, which makes the implant device receives the suitable power.

    摘要 i Abstract………… ii 致 謝……….. iii 目錄………… v 圖目錄 viii 表目錄 xii 第1章 緒論 1 1.1 研究背景 1 1.2 植入式裝置基本原理 3 1.3 研究動機 5 1.4 章節簡介 7 第2章 文獻回顧 8 2.1 植入式系統應用 8 2.2 植入式系統能量傳輸 12 2.3 植入式系統訊號回傳機制 16 2.4 無線能量傳輸控制 18 第3章 植入式系統電路 23 3.1 系統架構 23 3.2 交流對直流轉換器 26 3.2.1 電路架構 26 3.2.2 Pre-Layout Simulation 36 3.2.3 Post-Layout Simulation 41 3.2.4 Power and Feedback Transmission Simulation 45 3.3 晶片布局 48 3.4 晶片量測結果 49 3.4.1 量測環境 50 3.4.2 量測結果 51 第4章 外部能量與訊號傳輸電路 57 4.1 外部電路架構 57 4.2 功率放大器 58 4.3 LSK解調器 60 4.4 電源控制器 62 第5章 無線傳輸實驗 65 5.1 系統傳輸架構 65 5.2 系統傳輸硬體架設 66 5.3 實驗結果 67 第6章 結論 80 6.1 總結 80 6.2 未來工作 82 參考文獻 84

    [1] A. Djourno, C. Eyriès, “Prothèse auditive par excitation électrique à distance du nerf sensoriel à l'aide d'un bobinage inclus à demeure.” In: La Presse Médicale 65 no.63. 1957.
    [2] G. Handa, “Neural Prosthesis – Past, Present and Future,” Indian Journal of Physical Medicine & Rehabilitation, vol.17, Apr. 2006.
    [3] “Cochlear Implants,” National Institute on Deafness and Other Communication Disorders, no. 11-4798, Mar. 2011.
    [4] O. Qazi, B. Dijk ,M. Marc, J. Wouters,” Speech Understanding Performance of Cochlear Implant Subjects Using Time–Frequency Masking-Based Noise Reduction,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 5, May 2012.
    [5] J. A. Undurraga, et al., “Evaluating the Noise in Electrically Evoked Compound Action Potential Measurements in Cochlear Implants,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 7, Jul. 2012.
    [6] V. Gopalakrishna, et al., “Real-Time Automatic Tuning of Noise Suppression Algorithms for Cochlear Implant Applications,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 6, Jun. 2012.
    [7] Y. Vaiarello, et al., “Ultra-Low-Power Radio Microphone for Cochlear Implant Application,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 4, Dec. 2011.
    [8] S. Furman, G. Szarka, D. Layvand, "Reconstruction of Hyman's second pacemaker", Pacing Cl in Electrophysiol. 28(5):446-453, May 2005.
    [9] J. Cleland, J. Daubert , E. Erdmann, et al; the Cardiac Resynchronization — Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. , Mar. 7 2005.
    [10] J. Cleland, J. Daubert, E. Erdmann, N. Freemantle, D. Gras, L. Kappenberger, L. Tavazzi. "The effect of cardiac resynchronization on morbidity and mortality in heart failure". N Engl J Med 352 (15): 1539-49.
    [11] D. Chun, J. Heier, M. Raizman. "Visual prosthetic device for bilateral end-stage macular degeneration." Expert Rev Med Devices. 2 (6): 657-65.
    [12] S. Lane, B. Kuppermann. "The Implantable Miniature Telescope for macular degeneration." Curr Opin Ophthalmol. 17 (1): 94-8.
    [13] J.D. Loudin, D.M. Simanovskii, K. Vijayraghavan, C.K. Sramek, A.F. Butterwick, P. Huie, G.Y. McLean, and D.V. Palanker (2007). "Optoelectronic retinal prosthesis: system design and performance". J Neural Engineering 4: S72–S84.
    [14] A. Villavicencio, J. Leveque, L. Rubin, K. Bulsara, J. Gorecki JP . "Laminectomy versus percutaneous electrode placement for spinal cord stimulation". Neurosurgery 46 (2): 399-405; discussion 405-6.
    [15] J. Oakley, J. Prager. "Spinal cord stimulation: mechanisms of action". Spine 27: 2574-83.
    [16] M. Matharu, T. Bartsch , N. Ward, R. Frackowiak, R. Weiner, P. Goadsby. "Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study". Brain 127 (Pt 1): 220-30.
    [17] R. North, D. Kidd, F. Farrokhi, S. Piantadosi. "Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial". Neurosurgery 56 (1): 98-106; discussion 106-7.
    [18] R. Schmidt, A. Jonas, K. Oleson, R. Janknegt, M. Hassouna, S. Siegel , P. Kerrebroeck. Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral nerve study group. J Urol 1999 Aug;16(2):352-357.
    [19] J. Carmena, M. Lebedev, R. Crist, J. O’Doherty, D. Santucci, D. Dimitrov, P. Patil, C. Henriquez, M. Nicolelis, M.A.L. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1: 193-208.
    [20] M. Lebedev, J. Carmena, J. O’Doherty, M. Zacksenhouse, C. Henriquez, J. Principe, M. Nicolelis, Cortical ensemble adaptation to represent actuators controlled by a brain machine interface. J. Neurosci. 25: 4681-4693.
    [21] M. Serruya, N. Hatsopoulos, L. Paninski, M. Fellows, J. Donoghue, Instant neural control of a movement signal. Nature 416: 141-142.
    [22] M. Ghovanloo and S. Atluri, “An Integrated Full-Wave CMOS Rectifier With Built-In Back Telemetry for RFID and Implantable Biomedical Applications,” IEEE Transactions on Circuits and Systems I, vol.55, no. 10, pp. 3328-3334, Nov. 2008.
    [23] http://www.eardoc.info/ear-infection-symptoms-and-treatment
    [24] http://www.daviddarling.info/childrens_encyclopedia/Health_Revolution_Chapter5.html
    [25] G. Wang, W. Liu, et al.,” Design and Analysis of an Adaptive Transcutaneous Power Telemetry for Biomedical Implants,” IEEE Transactions on Circuits and Systems-I, vol. 52, no. 10, October 2005.
    [26] S. Haddad, R. Houben, and W. Serdijin ,"The evolution of pacemakers," IEEE Engineering in Medicine and Biology Magazine, vol.25,pp. 38-48, 2006.
    [27] W. Liu, M. Sivaprakasam, G. Wang, M. Zhou, and J. Granacki, “Implantable biomimetic microelectronic systems design,” IEEE Engineering in Medicine and Biology Magazine, pp.66-74, 2005.
    [28] C. Huang, S. Yen, and C. Wang,"A Li-ion battery charging design for biomedical implants," IEEE Asia Pacific Conference on Circuits and Systems , pp. 400-403, 2008
    [29] S. Roundy, E. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. Rabaey, P. Wright, and V. Sundararajan, "Improving power output for vibration-based energy scavengers," IEEE Pervasive Computing, vol.4, pp. 28-36, 2005.
    [30] J. Piella, “Energy Management, wireless and system solutions for highly integrated implantable devices”, Doctoral dissertation, Departament d’Enginyeria Electronica Universitat Autonoma de Barcelona, 2001.
    [31] G. Suaning and N. Lovell, “CMOS neurostimulation ASIC with 100 channels, scalable output, and bidirectional radio-frequency telemetry,” IEEE Transactions on Biomedical Engineering, vol. 48, pp. 248–260, Feb. 2001.
    [32] K. Stangel, et al., “A programmable intraocular CMOS pressure sensor system implant,” IEEE Journal of Solid State Circuits, vol. 36, pp. 1094–1100,Jul. 2001.
    [33] H. McDermott, “A custom-designed receiver-stimulator chip for an advanced multiple-channel hearing prosthesis,” IEEE Journal of Solid State Circuits, vol. 26, pp. 1161–1164, Aug. 1991.
    [34] U. Kaiser and W. Steinhaugen, “A low-power transponder IC for high performance identification systems,” IEEE Journal of Solid State Circuits, vol.30, pp. 306–310, Mar. 1995.
    [35] H. Yu and K. Najafi, “Low-power interface circuits for bio-implantable microsystems,” in IEEE International Solid State Circuits Conference, Feb. 2003.
    [36] B. Smith and Z. Tang, “An Externally Powered, Multichannel, Implantable Stimulator-Telemeter for Control of Paralyzed Muscle,” IEEE Transactions on Biomedical Engineering, vol. 45, no. 4, pp. 463-475, Apr. 1998.
    [37] R. Bashirullah, “A Smart Bi-directional Telemetry Unit for Retinal Prosthetic Device,” International Symposium on Circuits and Systems, vol.5, pp. V-5-V-8, 2003.
    [38] Y. Hu, M. Sawan, and M. N. El-Gamal, “A Power Recovery Strategy Dedicated To Implantable Applications,” IEEE International Conference on Electronics, Circuits and Systems, vol.3, pp. 1212 - 1215, 2003.
    [39] G. Gudnason, E. Bruun,and M. Haugland,“An Implantable Mixed Analog/digital Neural Stimulator Circuit,” International Symposium on Circuits and Systems, vol.5, pp. 375-378,1999.
    [40] T.T. Le, J. Han, A. Jouanne, K. Mayaram, T.S. Fiez, "Piezoelectric micro-power generation interface circuits,", IEEE Journal of Solid State Circuits, vol.41, no.6, pp.1411,1420, Jun. 2006.
    [41] M. Ghovanloo and K. Najafi, “Fully integrated wide-band high-current rectifiers for wireless biomedical implants,” IEEE Journal of Solid State Circuits, vol. 39, no. 11, pp. 1976–1984, Nov. 2004.
    [42] C. Peters, Y. Manoli, "Experimental results on power efficient single-poly floating gate rectifiers," International Symposium on Circuits and Systems, pp. 1097-1100, May 2009.
    [43] J. Yoo, L. Yan, S. Lee, Y. Kim, H. Yoo, "A 5.2 mW Self-Configured Wearable Body Sensor Network Controller and a 12 mu W Wirelessly Powered Sensor for a Continuous Health Monitoring System,", IEEE Journal of Solid State Circuits, vol.45, no.1, pp.178-188, Jan. 2010.
    [44] P. Hazucha, G. Schrom, J. Hahn, B.A. Bloechel, P. Hack, G.E. Dermer, S. Narendra, D. Gardner, T. Karnik, S. Borkar,"A 233-MHz 80%-87% efficient four-phase DC-DC converter utilizing air-core inductors on package," IEEE Journal of Solid State Circuits, vol.40, no.4, pp.838-845, Apr. 2005.
    [45] W. Liou, T. Chen, Y. Kuo, T. Huang, M. Yeh, "A High Efficiency Dual-Mode Buck Converter IC for Portable Applications," International Conference on Communications, Circuits and Systems, pp.1011-1015, July 2007.
    [46] H. Huang; K. Chen; S. Kuo, "Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications," IEEE Journal of Solid State Circuits , vol.42, no.11, pp.2451-2465, Nov. 2007.
    [47] D. Ma, W. Ki, C, Tsui; P. Mok, "Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode," IEEE Journal of Solid State Circuits, vol.38, no.1, pp.89-100, Jan 2003.
    [48] C. Huang, Y. Chen, C. Tsai, "Integrated single-inductor dual-output DC-DC converter with power-distributive control," IEEE International Symposium on Next-Generation Electronics, pp.33-36, Feb. 2013.
    [49] J. Xiao, A.V. Peterchev, J. Zhang, S.R. Sanders, "A 4-μa quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications, "IEEE Journal of Solid State Circuits, vol.39, no.12, pp.2342-2348, Dec. 2004.
    [50] Hung-Wei Chang, Wei-Hsun Chang, Chien-Hung Tsai, "Integrated single-inductor buck-boost or boost-boost DC-DC converter with power-distributive control," International Conference on Power Electronics and Drive System, Nov. 2009.
    [51] M. Sawan, Y. Hu, and J. Coulombe, "Wireless smart implants dedicated to multichannel monitoring and microstimulation," IEEE Circuits and Systems Magazine, Vol.5, pp. 21-39, 2005.
    [52] Z. Tang, et al., “Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator,” IEEE Transactions on Biomedical Engineering, vol. 42, pp. 524–528, May 1995.
    [53] C. Liang, J. Chen, C. Chung, C. Cheng, and C. Wang,“An implantable bi-directional wireless transmission system for transcutaneous biological signal recording,” Physiological Measurement, vol. 26, no. 1, pp. 83–97, Feb. 2005.
    [54] M.M. Ahmadi, G.A. Jullien, “A Wireless-Implantable Microsystem for Continuous Blood Glucose Monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, no. 3, Jun. 2009.
    [55] W. Xu, Z. Luo, S. Sonkusale, “Fully Digital BPSK Demodulator and Multilevel LSK Back Telemetry for Biomedical Implant Transceivers,” IEEE Transactions on Circuits and Systems -I, vol. 56, no. 9, Sep. 2009.
    [56] L. Zou, T. Larsen, “Dynamic power control circuit for implantable biomedical devices,” IET Circuits, Devices & Systems, vol.5 , pp.297-302, 2011.
    [57] P. Cong, W.H. Ko, D.J. Young, “A Wireless and Batteryless 10-Bit Implantable Blood Pressure Sensing Microsystem With Adaptive RF Powering for Real-Time Laboratory Mice Monitoring,” IEEE Journal of Solid State Circuits, vol. 44, no. 12, Dec. 2009.
    [58] J. Yoo, L. Yan, et al., “A 5.2 mW Self-Configured Wearable Body Sensor Network Controller and a 12 μW Wirelessly Powered Sensor for a Continuous Health Monitoring System,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1, Jan. 2010.
    [59] K. Tomita, R. Shinoda, T. Kuroda, H. Ishikuro, "1-W 3.3–16.3-V Boosting Wireless Power Transfer Circuits With Vector Summing Power Controller," IEEE Journal of Solid State Circuits, vol.47, no.11, pp.2576-2585, Nov. 2012.
    [60] T.D. Dissanayake, A.P. Hu, et al., "Experimental Study of a TET System for Implantable Biomedical Devices," IEEE Transactions on Biomedical Circuits and Systems, vol.3, no.6, pp.370,378, Dec. 2009.
    [61] V. Bhagavatula, W.C. Wesson, S.K. Shin, J.C. Rudell, "A Fully Integrated, Regulatorless CMOS Power Amplifier for Long-Range Wireless Sensor Communication," IEEE Journal of Solid State Circuits, vol.48, no.5, pp.1225-1236, May 2013.
    [62] K. Ueno, T. Hirose, T. Asai and Y. Amemiya , “A 300 nW, 15 ppm/C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs,” IEEE Journal of Solid State Circuits, vol.44, no.7, pp. 2047-2054, July 2009.
    [63] Willy M. C. Sansen, “Analog Design Essential”, Springer, Netherlands, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE